scholarly journals Maternal and Neonatal Factors Affecting Bone Mineral Content of Indonesian Term Newborns

2021 ◽  
Vol 9 ◽  
Author(s):  
Tunjung Wibowo ◽  
Neti Nurani ◽  
Janatin Hastuti ◽  
Alifah Anggraini ◽  
Rina Susilowati ◽  
...  

Background: Interactions between the genome and intrauterine environment can affect bone mineralization in newborns and even in adult life. Several studies show that intrauterine fetal bone mineralization or early postnatal bone condition influences the risk of osteoporosis in later life.Objectives: To determine whole body bone mineral content (WB BMC) and factors that influence neonatal WB BMC in Indonesian term newborns.Subjects/Methods: A cross-sectional study was conducted in Dr. Sardjito General Hospital, Yogyakarta, Indonesia. A total of 45 term, appropriate for gestational age (AGA) newborns were included in this study. BMC was assessed by dual-energy x-ray absorptiometry (DXA) in the first week of life. Weight (g), length (cm) and head circumference (cm) were measured at birth. Data on maternal characteristics were obtained from the maternal health records or reported by the mothers.Results: WB BMC measured in the present study (mean ± SD: 33.2 ± 9.3 g) was lower than WB BMC of similar populations in developed countries. Multiple linear regression showed that birth weight, birth length, and gestational age had a positive association with WB BMC (p = 0.048, 0.017, and <0.001, respectively), while maternal cigarette exposure had a negative association with WB BMC (p = 0.012). Male infants had significantly higher of WB BMC than female (p = 0.025). These determinants contribute to 55% variability of WB BMC.Conclusions: WB BMC in Indonesian term newborns is lower than populations in developed countries. Birth weight, length, gestational age, sex, and maternal cigarette exposure during pregnancy are significantly associated with WB BMC observed in Indonesian newborns.

1997 ◽  
Vol 82 (12) ◽  
pp. 3993-3997 ◽  
Author(s):  
Alexandre Lapillonne ◽  
Sophie Guerin ◽  
Pierre Braillon ◽  
Olivier Claris ◽  
Pierre D. Delmas ◽  
...  

A previous study using single photon absorptiometry has reported low bone mineral density of the radius in infants of diabetic mothers. The aim of this study was to assess by dual x-ray absorptiometry the whole body bone mineral content (WbBMC) and the body composition of 40 infants of diabetic mothers at birth (mean gestational age ± sd, 37.5 ± 1.3 weeks; mean birth weight ± sd, 3815 ± 641 g). WbBMC was not correlated with gestational age, but was well correlated with birth weight (r = 0.73; P = 0.0001) and also with fat mass (r = 0.87; P = 0.0001) and lean mass (r = 0.42; P = 0.008). The z-scores ± sd adjusted for weight for WbBMC and fat mass were significantly increased (1.3 ± 0.9 and 2.6 ± 1.3, respectively (P < 0.0001), but were not significantly influenced either by in utero growth or by the type of the diabetes mellitus of the mother. Bone mineralization and fat mass studied by whole body dual x-ray absorptiometry are increased at birth in these infants compared with reference curves.


1994 ◽  
Vol 83 (s405) ◽  
pp. 117-122 ◽  
Author(s):  
AA Lapillonne ◽  
FH Glorieux ◽  
BL Salle ◽  
PM Braillon ◽  
M Chambon ◽  
...  

Author(s):  
Yuka Tsukahara ◽  
Suguru Torii ◽  
Fumihiro Yamasawa ◽  
Jun Iwamoto ◽  
Takanobu Otsuka ◽  
...  

AbstractWith intensive training, bone injuries are a major concern for athletes. To assess bone condition, we often measure bone turnover markers, bone mineral content and density; however, in junior athletes, it is not easy to distinguish changes caused by bone injuries from those caused by growth, because the metabolism is increased in both cases. Moreover, although some studies have examined female endurance athletes, knowledge regarding changes in static and dynamic bone conditions in late teen athletes is limited. In this study, we measured the bone mineral content and density, as well as bone turnover markers, in 40 elite female sprinters in their late teens. Whole body mode dual-energy X-ray absorptiometry was performed to measure bone mineral content and density. Blood samples were collected to determine bone resorption and formation markers at the end of track season in 2016 and during the same period of the following year. Body weight and bone mineral content significantly increased, and tartrate-resistant acid phosphatase type 5b, bone-type alkaline phosphatase, and osteocalcin significantly decreased after a year. Furthermore, the rate of change in bone mineral content was higher in younger athletes, indicating that bone growth approaches completion in the late teen years and that bone metabolism accordingly decreases.


2020 ◽  
Vol 16 (5) ◽  
pp. 403-408
Author(s):  
K. Maher ◽  
H. Spooner ◽  
R. Hoffman ◽  
J. Haffner

Research in humans suggests whole-body vibration (WBV) aids in maintaining bone mineral content (BMC) yet results in the horse are less favourable. Anecdotally, WBV is reported to reduce pain and improve performance. This study was designed to test the effect of WBV on exercising horses, hypothesising that WBV would lower heart rate (HR) during treatment, increase BMC, modify markers of bone metabolism, and increase stride length. Eleven horses were randomly assigned into control (CON, n=5) or WBV (VIB, n=6) groups for a 28-day treatment period. Both groups exercised for 1 h, 6 d/wk on a mechanical exerciser. VIB horses received 50 Hz WBV for 45 min, 5 days/wk. Third metacarpal radiographs were taken at 0 and 28 days, and BMC determined via radiographic bone aluminium equivalence (RBAE). Blood samples taken at day 0 and 28 were analysed for serum pyridinoline cross-links (PYD) and osteocalcin (OC). Heart rate was analysed on day 23 for 4 horses per group. Stride length was determined while trotting in hand on day 0 and 28. No influence of WBV on RBAE of any bone cortices, PYD or OC was observed (P>0.10); stride length was also unaffected (P=0.88). A period effect was observed for a decrease in RBAE of the lateral cortex (P=0.01), and a trend towards a decrease was noted in total density (P=0.05), likely an effect of stalling. Compared to baseline, ΔHR declined during treatment (P=0.06) in VIB (-4.8±2.8 bpm) compared to control CON (3.0±2.8 bpm). The results suggest, in normal exercising horses, WBV does not increase BMC, influence markers of bone metabolism, or increase stride length.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 42-42
Author(s):  
Laura A Merriman ◽  
Craig Wyatt ◽  
Marie-Pierre Létourneau-Montminy ◽  
Xaviere Rousseau ◽  
Dan Bussières

Abstract Imbalances between calcium (Ca) and phosphorus (P) impair growth performance and bone mineralization. However, reducing dietary limestone may change the buffering capacity of feed in early nursery piglets, which may help prevent post-weaning diarrhea. An experiment was conducted to evaluate the impact of reducing Ca post weaning compared to recommendations outlined by NRC (2012) or a low P diet. Dietary treatments consisted of 1) Low Ca (LCa; Phase 1, 0.51% Ca and 0.47% STTD P), 2) NRC recommendations (NRC; Phase 1, 0.85% Ca and 0.42% STTD P), and 3) a recommendation lower in phosphorus (LP; Phase 1, 0.65% Ca and 0.36% STTD P). Each diet was fed over 4 phases. Piglets (n = 953; 276/275 Fast X PIC 800 genetics) were blocked by room, sex, and initial BW (6 kg). Feed intake and pig weights were recorded weekly. At 12 d and 41 d, blood was collected and Dual-X ray (DXA) measurements were taken using 8 piglets per treatment. Fecal scores were evaluated during wk 4 and 5. Data were analyzed using MIXED procedure of SAS (SAS Inst. Inc., Cary, NC). There were no differences observed in mortality, overall growth performance, plasma Ca and P, and scour scores at either time point. At 12 d, the bone mineral content was reduced (P = 0.001) in LP pigs compared to LCa and NRC. At 41 d, bone mineral content was reduced in NRC in comparison to LCa while LP was intermediate (P = 0.001). Plasma parameters showed an increased magnesium (Mg) and Ca:Mg in LCa (P < 0.01) that can be related to bone resorption to face Ca hypocalcemia. Pigs were healthy with no enteric challenges, limiting the ability to observe a benefit in fecal scores. In conclusion, piglets can maintain growth and bone mineralization through a short-term limestone removal program.


Sign in / Sign up

Export Citation Format

Share Document