scholarly journals Interplay Between Angiotensin II Type 1 Receptor and Thrombin Receptor Revealed by Bioluminescence Resonance Energy Transfer Assay

2020 ◽  
Vol 11 ◽  
Author(s):  
Isra Al Zamel ◽  
Abdulrasheed Palakkott ◽  
Arshida Ashraf ◽  
Rabah Iratni ◽  
Mohammed Akli Ayoub
2012 ◽  
Vol 287 (12) ◽  
pp. 9090-9099 ◽  
Author(s):  
András Balla ◽  
Dániel J. Tóth ◽  
Eszter Soltész-Katona ◽  
Gyöngyi Szakadáti ◽  
László Sándor Erdélyi ◽  
...  

2005 ◽  
Vol 79 (13) ◽  
pp. 8629-8636 ◽  
Author(s):  
David Cluet ◽  
Christophe Bertsch ◽  
Christian Beyer ◽  
Liliane Gloeckler ◽  
Mathieu Erhardt ◽  
...  

ABSTRACT CD4 down-regulation by human immunodeficiency virus type 1 (HIV-1) Nef protein is a key function for virus virulence. This activity may be mediated by a direct Nef-CD4 interaction. We investigated the formation, in situ, of such a complex between proteins using bioluminescence resonance energy transfer technology and coimmunoprecipitations. Our data clearly demonstrate that Nef and CD4 interact in intact human cells. Moreover, our results clearly indicate that the dileucine motif of the CD4 cytoplasmic domain, critical for the Nef-induced CD4 down-regulation, is not implicated in the Nef/CD4 complex formation in the cellular context.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomomi Kaku ◽  
Kazunori Sugiura ◽  
Tetsuyuki Entani ◽  
Kenji Osabe ◽  
Takeharu Nagai

AbstractUsing the lux operon (luxCDABE) of bacterial bioluminescence system as an autonomous luminous reporter has been demonstrated in bacteria, plant and mammalian cells. However, applications of bacterial bioluminescence-based imaging have been limited because of its low brightness. Here, we engineered the bacterial luciferase (heterodimer of luxA and luxB) by fusion with Venus, a bright variant of yellow fluorescent protein, to induce bioluminescence resonance energy transfer (BRET). By using decanal as an externally added substrate, color change and ten-times enhancement of brightness was achieved in Escherichia coli when circularly permuted Venus was fused to the C-terminus of luxB. Expression of the Venus-fused luciferase in human embryonic kidney cell lines (HEK293T) or in Nicotiana benthamiana leaves together with the substrate biosynthesis-related genes (luxC, luxD and luxE) enhanced the autonomous bioluminescence. We believe the improved luciferase will forge the way towards the potential development of autobioluminescent reporter system allowing spatiotemporal imaging in live cells.


Sign in / Sign up

Export Citation Format

Share Document