scholarly journals Improvement of the High-Performance Al-Doped LiNi1/3Co1/3Mn1/3O2 Cathode Material for New Electro-Optical Conversion Devices

2021 ◽  
Vol 9 ◽  
Author(s):  
Yumei Gao ◽  
Wangran Yuan ◽  
Xinqi Dou

The ternary cathode material LiNi1/3Co1/3Mn1/3O2 has been extensively focused on as the power sources for new electro-optical conversion devices and lithium-ion batteries. To improve the electrochemical performance, Al doping is one of the effective strategies. Based on the density functional theory of first-principles, the band gap, volume, partial density of states, lithiation formation energy, electron density difference, and electrons’ potential energy of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 were simulated and analyzed with Materials Studio, Nanodcal and Matlab. Results show that Li0.9Al0.1Ni1/3Co1/3Mn1/3O2 has a better conductivity and cycling capability. The potential energy maps of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 simulated in Matlab indicate that the rate capability of LiNi1/3Co1/3Mn1/3O2 is promoted after Al doping. Our theoretical advice could be an important choice for the power application of new optoelectronic devices. In addition, our methods could provide some theoretical guidance for the subsequent electrochemical performance investigations on doping of optoelectronic devices or lithium-ion battery materials.

2021 ◽  
Vol 9 ◽  
Author(s):  
Yumei Gao ◽  
Yuchong Hui ◽  
Hang Yin

The Li-rich Mn-based oxide Li1.2Mn0.54Ni0.13Co0.13O2 has been extensively studied as a cathode material of the battery module for new optoelectronic devices. To improve and enhance the electrochemical performance, sodium doping is one of the effective approaches. According to the density functional theory of first-principles, the band gap, partial density of states, lithiation formation energy, electron density difference, and potential energy of electrons for Li1.2−xNaxMn0.54Ni0.13Co0.13O2 were simulated with Materials Studio, Nanodcal, and Matlab. When the sodium doping amount x = 0.10 mol, simulations show that Li1.2−xNaxMn0.54Ni0.13Co0.13O2 has a better conductivity. The potential maps of Li1.2−xNaxMn0.54Ni0.13Co0.13O2 obtained in Matlab demonstrate that the potential barrier is lower and the rate capability is enhanced after sodium doping. Results of analyses and calculations agree with the experimental result of Chaofan Yang’s group. This theoretical method could be a great avenue for the investigation of the battery application of new optoelectronic devices. Also, our findings could give some theoretical guidance for the subsequent electrochemical performance study on doping in the field of lithium-ion batteries.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yumei Gao ◽  
Kaixiang Shen ◽  
Ping Liu ◽  
Liming Liu ◽  
Feng Chi ◽  
...  

The cathode material LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery has a better electrochemical property than LiCoO2. In order to improve its electrochemical performance, Na-doped LiNi1/3Co1/3Mn1/3O2 is one of the effective modifications. In this article, based on the density functional theory of the first-principles, the conductivity and the potential energy of the Na-doped LiNi1/3Co1/3Mn1/3O2 are calculated with Materials Studio and Nanodcal, respectively. The calculation results of the band gap, partial density of states, formation energy of intercalation of Li+, electron density difference, and potential energy of electrons show that the new cathode material Li1−xNax Ni1/3Co1/3Mn1/3O2 has a better conductivity when the Na-doping amount is x = 0.05 mol. The 3D and 2D potential maps of Li1−xNaxNi1/3Co1/3Mn1/3O2 can be obtained from Nanodcal. The maps demonstrate that Na-doping can reduce the potential well and increase the removal rate of lithium-ion. The theoretical calculation results match well with experimental results. Our method and analysis can provide some theoretical proposals for the electrochemical performance study of doping. This method can also be applied to the performance study of new optoelectronic devices.


2020 ◽  
Vol 31 (21) ◽  
pp. 19475-19486
Author(s):  
Jeffin James Abraham ◽  
Umair Nisar ◽  
Haya Monawwar ◽  
Aisha Abdul Quddus ◽  
R. A. Shakoor ◽  
...  

AbstractLithium-rich layered oxides (LLOs) such as Li1.2Ni0.13Mn0.54Co0.13O2 are suitable cathode materials for future lithium-ion batteries (LIBs). Despite some salient advantages, like low cost, ease of fabrication, high capacity, and higher operating voltage, these materials suffer from low cyclic stability and poor capacity retention. Several different techniques have been proposed to address the limitations associated with LLOs. Herein, we report the surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by utilizing cheap and readily available silica (SiO2) to improve its electrochemical performance. Towards this direction, Li1.2Ni0.13Mn0.54Co0.13O2 was synthesized utilizing a sol–gel process and coated with SiO2 (SiO2 = 1.0 wt%, 1.5 wt%, and 2.0 wt%) employing dry ball milling technique. XRD, SEM, TEM, elemental mapping and XPS characterization techniques confirm the formation of phase pure materials and presence of SiO2 coating layer on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 particles. The electrochemical measurements indicate that the SiO2-coated Li1.2Ni0.13Mn0.54Co0.13O2 materials show improved electrochemical performance in terms of capacity retention and cyclability when compared to the uncoated material. This improvement in electrochemical performance can be related to the prevention of electrolyte decomposition when in direct contact with the surface of charged Li1.2Ni0.13Mn0.54Co0.13O2 cathode material. The SiO2 coating thus prevents the unwanted side reactions between cathode material and the electrolyte. 1.0 wt% SiO2-coated Li1.2Ni0.13Mn0.54Co0.13O2shows the best electrochemical performance in terms of rate capability and capacity retention.


RSC Advances ◽  
2018 ◽  
Vol 8 (51) ◽  
pp. 28978-28986 ◽  
Author(s):  
Yifang Wu ◽  
Shaokun Chong ◽  
Yongning Liu ◽  
ShengWu Guo ◽  
Pengwei Wang ◽  
...  

C18BF15 was first adopted as a boron source and has demonstrated its clear modification effects, as shown by the high rate capability.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950098 ◽  
Author(s):  
Jianjian Shi ◽  
Xiaoxing Chen ◽  
Chunyu Wang ◽  
Zhiguo Wang

Lithium-rich manganese-based layered oxides are of great interest as cathode materials for lithium ion batteries due to their high energy density. The voltage decay and capacity fading during prolonged charge/discharge cycling are the key obstacles for their practical usage. In this work, using density functional theory, we investigated the origin of the Ni surface segregation by calculating the defect formation energies of antisite defects, including Ni cation substituting a Li cation [Formula: see text] and pairs of Ni cation swapping with Li cation ([Formula: see text]–[Formula: see text]) in [Formula: see text], [Formula: see text] and [Formula: see text] to represent the Mn-rich, Mn–Ni equivalence and Ni-rich conditions, respectively. Results show that [Formula: see text]–[Formula: see text] defect is of energy favorable in Li-rich and Mn-rich layered oxide cathode. Al-doping is beneficial for improving the structure stability and preventing the surface segregation, thus Al-doping can improve cycle ability and rate capability of Li-rich and Mn-rich layered cathodes. This work provides deep insights for the design of layered cathode materials with both high capacity and voltage stability during cycling.


2015 ◽  
Vol 3 (27) ◽  
pp. 14291-14297 ◽  
Author(s):  
Yi-di Zhang ◽  
Yi Li ◽  
Xiao-qing Niu ◽  
Dong-huang Wang ◽  
Ding Zhou ◽  
...  

A novel peanut-like hierarchical micro/nano-lithium-rich cathode material with superior cyclic stability and enhanced rate capability is synthesized via a solvothermal method.


RSC Advances ◽  
2015 ◽  
Vol 5 (63) ◽  
pp. 50859-50864 ◽  
Author(s):  
Qingliang Xie ◽  
Zhibiao Hu ◽  
Chenhao Zhao ◽  
Shuirong Zhang ◽  
Kaiyu Liu

The LaF3-coated Li1.2Mn0.56Ni0.16Co0.08O2, compared with pristine Li1.2Mn0.56Ni0.16Co0.08O2, exhibits an enormous improvement in the initial coulombic efficiency and rate capability.


Sign in / Sign up

Export Citation Format

Share Document