scholarly journals Using RT-qPCR, Proteomics, and Microscopy to Unravel the Spatio-Temporal Expression and Subcellular Localization of Hordoindolines Across Development in Barley Endosperm

2018 ◽  
Vol 9 ◽  
Author(s):  
Azita Shabrangy ◽  
Valentin Roustan ◽  
Siegfried Reipert ◽  
Marieluise Weidinger ◽  
Pierre-Jean Roustan ◽  
...  
2019 ◽  
Author(s):  
Gemma Gou ◽  
Adriana Roca-Fernandez ◽  
Murat Kilinc ◽  
Elena Serrano ◽  
Rita Reig-Viader ◽  
...  

AbstractThe Syngap1 gene is a major regulator of synapse biology and neural circuit function. Genetic variants linked to epilepsy and intellectual disability disrupt synaptic function and neural excitability. The SynGAP protein has been involved in multiple signaling pathways and can regulate small GTPases with very different functions. Yet, the molecular bases behind this pleiotropy are poorly understood. We hypothesize that different SynGAP isoforms will mediate different sets of functions and that deciphering their spatio-temporal expression and subcellular localization will accelerate our understanding of the multiple functions performed by SynGAP. Using antibodies that detect all isoforms of SynGAP, we found that its subcellular localization changed throughout postnatal development. Consistent with previous reports, SynGAP was enriched in the postsynaptic density in the mature forebrain. However, this was age-dependent and SynGAP was predominantly found in non-synaptic locations in a period of postnatal development highly sensitive to SynGAP levels. Furthermore, we identified different expression patterns in the spatial and temporal axes for different SynGAP isoforms. Particularly noticeable was the delayed expression of SynGAP α1 isoforms, which bind to PSD-95 at the postsynaptic density, in cortex and hippocampus during the first two weeks of postnatal development. The subcellular localization of SynGAP was also isoform-dependent. While, α1 isoforms were highly enriched in the postsynaptic density, other C-terminal isoforms were less enriched or even more abundant in non-synaptic locations, particularly during the postnatal period. Thus, the regulation of expression and subcellular distribution of SynGAP isoforms may contribute to isoform-specific regulation of small GTPases, explaining SynGAP pleiotropy.


2007 ◽  
Vol 304 (1) ◽  
pp. 62-74 ◽  
Author(s):  
Laure Guenin ◽  
Yaël Grosjean ◽  
Stéphane Fraichard ◽  
Angel Acebes ◽  
Fawzia Baba-Aissa ◽  
...  

2001 ◽  
Vol 114 (10) ◽  
pp. 1811-1820 ◽  
Author(s):  
M.E. Miller ◽  
F.R. Cross

Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.


2020 ◽  
Author(s):  
Yuanyuan Xu ◽  
Shuping Zhang ◽  
Yujun Guo ◽  
Wen Chen ◽  
Yanqun Huang

Abstract Background: The CDS gene encodes the CDP-diacylglycerol synthase enzyme that catalyzes the formation of CDP-diacylglycerol (CDP-DAG) from phosphatidic acid. At present, there are no reports of CDS2 in birds. Here, we identified chicken CDS2 transcripts by combining conventional RT- PCR amplification, 5' RACE (Fig. 1A), and 3' RACE, explored the spatio-temporal expression profiles of total CDS2 and the longest transcript variant CDS2-4, and investigated the effect of exogenous insulin on total the mRNA level of CDS2 by quantitative real-time PCR. Results: Four transcripts of chicken CDS2 (CDS2-1, -2, -3, and -4) were identified, which were alternatively spliced at the 3′-untranslated region (UTR). CDS2 was widely expressed in all tissues examined and the longest variant CDS2-4 was the major transcript. Both total CDS2 and CDS2-4 were prominently expressed in adipose tissue and the heart, and exhibited low expression in the liver and pectoralis of 49 day-old chickens. Quantitative real-time PCR revealed that total CDS2 and CDS2-4 had different spatio-temporal expression patterns in chicken. Total CDS2 exhibited a similar temporal expression tendency with a high level in the later period of incubation (embryonic day 19 [E19] or 1-day-old) in the brain, liver, and pectoralis. While CDS2-4 presented a distinct temporal expression pattern in these tissues, CDS2-4 levels peaked at 21 days in the brain and pectoralis, while liver CDS2-4 mRNA levels were highest at the early stage of hatching (E10). Total CDS2 (P < 0.001) and CDS2-4 (P = 0.0090) mRNA levels in the liver were differentially regulated throughout development of the chicken. Exogenous insulin significantly downregulated the level of total CDS2 at 240 min in the pectoralis of Silky chickens (P < 0.01). Total CDS2 levels in the liver of Silky chickens were higher than that of the broiler in the basal state and after insulin stimulation. Conclusion: Chicken CDS2 has multiple transcripts with variation at the 3′-UTR, which was prominently expressed in adipose tissue. Total CDS2 and CDS2-4 presented distinct spatio-temporal expression patterns, and they were differentially regulated with age in liver. Insulin could regulate chicken CDS2 levels in a breed- and tissue-specific manner.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenying Zhang ◽  
Mostafa Abdelrahman ◽  
Songtao Jiu ◽  
Le Guan ◽  
Jian Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document