scholarly journals Resurrection of Wheat Cultivar PBW343 Using Marker-Assisted Gene Pyramiding for Rust Resistance

2021 ◽  
Vol 12 ◽  
Author(s):  
Achla Sharma ◽  
Puja Srivastava ◽  
G. S. Mavi ◽  
Satinder Kaur ◽  
Jaspal Kaur ◽  
...  

Wheat variety PBW343, released in India in 1995, became the most widely grown cultivar in the country by the year 2000 owing to its wide adaptability and yield potential. It initially succumbed to leaf rust, and resistance genes Lr24 and Lr28 were transferred to PBW343. After an unbroken reign of about 10 years, the virulence against gene Yr27 made PBW343 susceptible to stripe rust. Owing to its wide adaptability and yield potential, PBW343 became the prime target for marker-assisted introgression of stripe rust resistance genes. The leaf rust-resistant versions formed the base for pyramiding stripe rust resistance genes Yr5, Yr10, Yr15, Yr17, and Yr70, in different introgression programs. Advanced breeding lines with different gene combinations, PBW665, PBW683, PBW698, and PBW703 were tested in national trials but could not be released as varieties. The genes from alien segments, Aegilops ventricosa (Lr37/Yr17/Sr38) and Aegilops umbellulata (Lr76/Yr70), were later pyramided in PBW343. Modified marker-assisted backcross breeding was performed, and 81.57% of the genetic background was recovered in one of the selected derivative lines, PBW723. This line was evaluated in coordinated national trials and was released for cultivation under timely sown irrigated conditions in the North Western Plain Zone of India. PBW723 yields an average of 58.0 qtl/ha in Punjab with high potential yields. The genes incorporated are susceptible to stripe rust individually, but PBW723 with both genes showed enhanced resistance. Three years post-release, PBW723 occupies approximately 8–9% of the cultivated area in the Punjab state. A regular inflow of diverse resistant genes, their rapid mobilization to most productive backgrounds, and keeping a close eye on pathogen evolution is essential to protect the overall progress for productivity and resistance in wheat breeding, thus helping breeders to keep pace with pathogen evolution.

2005 ◽  
Vol 124 (6) ◽  
pp. 538-541 ◽  
Author(s):  
G. F. Marais ◽  
B. McCallum ◽  
J. E. Snyman ◽  
Z. A. Pretorius ◽  
A. S. Marais

Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1302-1312 ◽  
Author(s):  
Z. F. Li ◽  
X. C. Xia ◽  
X. C. Zhou ◽  
Y. C. Niu ◽  
Z. H. He ◽  
...  

Identification of seedling and slow stripe rust resistance genes is important for gene pyramiding, gene deployment, and developing slow-rusting wheat cultivars to control the disease. A total of 98 Chinese lines were inoculated with 26 pathotypes of Puccinia striiformis f. sp. tritici for postulation of stripe rust resistance genes effective at the seedling stage. A total of 135 wheat lines were planted at two locations to characterize their slow rusting responses to stripe rust in the 2003-2004 and 2004-2005 cropping seasons. Genes Yr2, Yr3a, Yr4a, Yr6, Yr7, Yr9, Yr26, Yr27, and YrSD, either singly or in combinations, were postulated in 72 lines, whereas known resistance genes were not identified in the other 26 accessions. The resistance genes Yr9 and Yr26 were found in 42 and 19 accessions, respectively. Yr3a and Yr4a were detected in two lines, and four lines may contain Yr6. Three lines were postulated to possess YrSD, one carried Yr27, and one may possess Yr7. Thirty-three lines showed slow stripe rusting resistance at two locations in both seasons.


Crop Science ◽  
2006 ◽  
Vol 46 (1) ◽  
pp. 485-487 ◽  
Author(s):  
O. Chicaiza ◽  
I.A. Khan ◽  
X. Zhang ◽  
J.C. Brevis ◽  
L. Jackson ◽  
...  

2010 ◽  
Vol 122 (1) ◽  
pp. 239-249 ◽  
Author(s):  
Sybil A. Herrera-Foessel ◽  
Evans S. Lagudah ◽  
Julio Huerta-Espino ◽  
Matthew J. Hayden ◽  
Harbans S. Bariana ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Mesfin Kebede Gessese

Wheat production started in Australia around 1788 using early maturing varieties adapted to Australian conditions that were able to escape diseases as well as moisture stress conditions. Wheat production is concentrated on mainland Australia in a narrow crescent land considered as the wheat belt occupying an area of about 13.9 million hectares. Rusts are the most important production constraints to wheat production in the world and Australia causing significant yield losses and decreased the qualities of grains. Wheat is affected by three different types of rust diseases: leaf rust, stripe rust or yellow rust, and stem rust. Each species of the rust pathogen has many races or pathotypes that parasitize only on certain varieties of host species, which can only be traced and identified by differential cultivars. Pathotype surveillance is the basis for information on the virulence or pathogenic variations existing in a particular country or wheat growing region of the world. Studies in pathotype variation are conducted in controlled environments using multi-pathotype tests. The currently cultivated commercial wheat varieties of Australia possess leaf rust resistant genes: Lr1, Lr3a, Lr13, Lr13+, Lr14a, Lr17a, Lr17b, Lr20, Lr23, Lr24, Lr26, Lr27, Lr31, Lr34, Lr37, and Lr46; stem rust resistance genes: Sr2, Sr5, Sr8a, Sr8b, Sr9b, Sr9g, Sr11, Sr12, Sr13, Sr15, Sr17, Sr22, Sr24, Sr26, Sr30, Sr36, Sr38, and Sr57; and stripe rust resistance genes: Yr4, Yr9, Yr17, Yr18, Yr27, and Yr33. This paper discusses the historical and current significance of rusts to wheat production in the world with particular reference to Australia viz-a-viz detail description of each of the three rusts and their respective virulence variations through the resistance genes deployed in the commercial cultivars.


Sign in / Sign up

Export Citation Format

Share Document