scholarly journals The Role of Sugar Signaling in Regulating Plant Fatty Acid Synthesis

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyang Zhai ◽  
Jantana Keereetaweep ◽  
Hui Liu ◽  
Changcheng Xu ◽  
John Shanklin

Photosynthates such as glucose, sucrose, and some of their derivatives play dual roles as metabolic intermediates and signaling molecules that influence plant cell metabolism. Such sugars provide substrates for de novo fatty acid (FA) biosynthesis. However, compared with the well-defined examples of sugar signaling in starch and anthocyanin synthesis, until recently relatively little was known about the role of signaling in regulating FA and lipid biosynthesis. Recent research progress shows that trehalose 6-phosphate and 2-oxoglutarate (2-OG) play direct signaling roles in the regulation of FA biosynthesis by modulating transcription factor stability and enzymatic activities involved in FA biosynthesis. Specifically, mechanistic links between sucrose non-fermenting−1–related protein kinase 1 (SnRK1)–mediated trehalose 6-phosphate (T6P) sensing and its regulation by phosphorylation of WRI1 stability, diacylglycerol acyltransferase 1 (DGAT1) enzyme activity, and of 2-OG–mediated relief of inhibition of acetyl-CoA carboxylase (ACCase) activity by protein PII are exemplified in detail in this review.

Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2600
Author(s):  
Matheus Pinto De Oliveira ◽  
Marc Liesa

Tumors remodel their metabolism to support anabolic processes needed for replication, as well as to survive nutrient scarcity and oxidative stress imposed by their changing environment. In most healthy tissues, the shift from anabolism to catabolism results in decreased glycolysis and elevated fatty acid oxidation (FAO). This change in the nutrient selected for oxidation is regulated by the glucose-fatty acid cycle, also known as the Randle cycle. Briefly, this cycle consists of a decrease in glycolysis caused by increased mitochondrial FAO in muscle as a result of elevated extracellular fatty acid availability. Closing the cycle, increased glycolysis in response to elevated extracellular glucose availability causes a decrease in mitochondrial FAO. This competition between glycolysis and FAO and its relationship with anabolism and catabolism is conserved in some cancers. Accordingly, decreasing glycolysis to lactate, even by diverting pyruvate to mitochondria, can stop proliferation. Moreover, colorectal cancer cells can effectively shift to FAO to survive both glucose restriction and increases in oxidative stress at the expense of decreasing anabolism. However, a subset of B-cell lymphomas and other cancers require a concurrent increase in mitochondrial FAO and glycolysis to support anabolism and proliferation, thus escaping the competing nature of the Randle cycle. How mitochondria are remodeled in these FAO-dependent lymphomas to preferably oxidize fat, while concurrently sustaining high glycolysis and increasing de novo fatty acid synthesis is unclear. Here, we review studies focusing on the role of mitochondrial FAO and mitochondrial-driven lipid synthesis in cancer proliferation and survival, specifically in colorectal cancer and lymphomas. We conclude that a specific metabolic liability of these FAO-dependent cancers could be a unique remodeling of mitochondrial function that licenses elevated FAO concurrent to high glycolysis and fatty acid synthesis. In addition, blocking this mitochondrial remodeling could selectively stop growth of tumors that shifted to mitochondrial FAO to survive oxidative stress and nutrient scarcity.


2009 ◽  
Vol 25 (12) ◽  
pp. 545-550 ◽  
Author(s):  
Alice S. Tarun ◽  
Ashley M. Vaughan ◽  
Stefan H.I. Kappe

2018 ◽  
Vol 61 (3) ◽  
pp. R123-R131 ◽  
Author(s):  
Hyeon Young Park ◽  
Hye Suk Kang ◽  
Seung-Soon Im

Fatty acids are essential nutrients that contribute to several intracellular functions. Fatty acid synthesis and oxidation are known to be regulated by sterol regulatory element-binding proteins (SREBPs), which play a pivotal role in the regulation of cellular triglyceride synthesis and cholesterol biogenesis. Recent studies point to a multifunctional role of SREBPs in the pathogenesis of metabolic diseases, such as obesity, type II diabetes and cancer as well as in immune responses. Notably, fatty acid metabolic intermediates are involved in energy homeostasis and pathophysiological conditions. In particular, intracellular fatty acid metabolism affects an inflammatory response, thereby influencing metabolic diseases. The objective of this review is to summarize the recent advances in our understanding of the dual role of SREBPs in both lipid metabolism and inflammation-mediated metabolic diseases.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


2013 ◽  
Vol 305 (2) ◽  
pp. E205-E212 ◽  
Author(s):  
Francisco Visiedo ◽  
Fernando Bugatto ◽  
Viviana Sánchez ◽  
Irene Cózar-Castellano ◽  
Jose L. Bartha ◽  
...  

Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ∼30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ∼20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ∼40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ∼70% and phosphorylation levels of acetyl-CoA carboxylase by ∼25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides.


1967 ◽  
Vol 242 (18) ◽  
pp. 4013-4022 ◽  
Author(s):  
Arthur F. Whereat ◽  
Franklin E. Hull ◽  
Margaret W. Orishimo ◽  
Joseph L. Rabinowitz

2013 ◽  
Vol 33 (6) ◽  
pp. 494-502 ◽  
Author(s):  
Andreza Lúcia Menezes ◽  
Mayara Peron Pereira ◽  
Samyra Lopes Buzelle ◽  
Maísa Pavani dos Santos ◽  
Suélem Aparecida de França ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document