scholarly journals Genetic Variation for Economically Important Traits in Cupressus lusitanica in New Zealand

2021 ◽  
Vol 12 ◽  
Author(s):  
Ahmed Ismael ◽  
Jaroslav Klápště ◽  
Grahame T. Stovold ◽  
Kane Fleet ◽  
Heidi Dungey

Increasing productivity and tolerance against cypress canker disease is an important goal in the Mexican white cypress breeding program in New Zealand, and screening has been in place since 1983. Cypress canker disease is caused by Seiridium cardinale and Seiridium cupressi, the current study presents the results of two progeny trials within the breeding program in the North Island of New Zealand. The trials were established as open-pollinated progeny tested and were assessed for diameter at breast height, branch size, canker severity score, malformation score, and stem straightness score and acceptability score. Heritability estimates were moderate ranging from 0.21 to 0.41 for diameter at breast height and from 0.14 to 0.31 for canker severity score. Stem form attributes showed heritability from 0.08 (malformation) to 0.38 (straightness). No trait showed any significant G × E interaction between investigated sites. This was supported by the very strong genetic correlations estimated between the traits recorded in Welcome Bay and Matata trials. Unfavourable genetic correlations ranging from 0.25 to 0.46 were found between diameter at breast height and canker severity score, indicating that the continued selection for genotypes with improved diameter at breast height would also increase susceptibility to cypress canker. Additionally, unfavourable genetic correlations ranging from 0.52 to 0.73 were found between branch size and diameter at breast height and should be considered in selection programs. The moderate heritability estimated for canker severity score indicates that breeding values for this trait could be predicted with acceptable accuracy and included in the breeding program for Cupressus lusitanica, enabling the identification of genotypes with tolerance to canker severity to be deployed to locations where cypress canker is present in New Zealand.

2021 ◽  
Vol 13 (8) ◽  
pp. 4167
Author(s):  
David Kombi Kaviriri ◽  
Huan-Zhen Liu ◽  
Xi-Yang Zhao

In order to determine suitable traits for selecting high-wood-yield Korean pine materials, eleven morphological characteristics (tree height, basal diameter, diameter at breast height, diameter at 3 meter height, stem straightness degree, crown breadth, crown height, branch angle, branch number per node, bark thickness, and stem volume) were investigated in a 38-year-old Korean pine clonal trial at Naozhi orchard. A statistical approach combining variance and regression analysis was used to extract appropriate traits for selecting elite clones. Results of variance analysis showed significant difference in variance sources in most of the traits, except for the stem straightness degree, which had a p-value of 0.94. Moderate to high coefficients of variation and clonal repeatability ranged from 10.73% to 35.45% and from 0.06% to 0.78%, respectively. Strong significant correlations on the phenotypic and genotypic levels were observed between the straightness traits and tree volume, but crown breadth was weakly correlated to the volume. Four principal components retaining up to 80% of the total variation were extracted, and stem volume, basal diameter, diameter at breast height, diameter at 3 meter height, tree height, and crown height displayed high correlation to these components (r ranged from 0.76 to 0.98). Based on the Type III sum of squares, tree height, diameter at breast height, and branch number showed significant information to explain the clonal variability based on stem volume. Using the extracted characteristics as the selection index, six clones (PK105, PK59, PK104, PK36, PK28, and K101) displayed the highest Qi values, with a selection rate of 5% corresponding to the genetic gain of 42.96% in stem volume. This study provides beneficial information for the selection of multiple traits for genetically improved genotypes of Korean pine.


2011 ◽  
Vol 41 (6) ◽  
pp. 1333-1343 ◽  
Author(s):  
A.N. Callister ◽  
N. England ◽  
S. Collins

Eucalyptus globulus Labill. is increasingly considered for supply of solid-wood products such as sawlogs, yet genetic studies of solid-wood traits have been lacking. We estimated genetic parameters of growth and form traits that affect log value in full-sib families from two advanced-generation breeding populations on eight sites in Western Australia. Mean single-site heritability was 0.11 ± 0.01 for diameter at breast height (DBH), 0.28 ± 0.05 for stem straightness, 0.09 ± 0.02 for branch thickness, and 0.05 ± 0.02 for forking incidence. Dominance effects were significant (p < 0.05) at four sites for DBH and branch thickness and at three sites (one population) for straightness. Mean intersite additive genetic correlations were 0.76 ± 0.06 for DBH (n = 7), 0.75 ± 0.11 for stem straightness (n = 7), and 0.58 ± 0.07 for branch thickness (n = 4). Mean intersite dominance genetic correlations were 0.90 ± 0.04 for DBH (n = 7), 0.26 ± 0.27 (n = 4) for straightness, and 0.68 ± 0.11 for branch thickness (n = 3). Additive genetic correlations between DBH and straightness ranged from –0.71 ± 0.23 to 0.33 ± 0.19 with an average of –0.18 ± 0.12 (n = 8). Genetic correlations between DBH and branch thickness were mostly weak although straightness was generally associated with thinner branches (mean additive correlation 0.44 ± 0.15, n = 6). We conclude that prospects appear favourable for improving the solid-wood value of E. globulus by selection and breeding.


1989 ◽  
Vol 19 (7) ◽  
pp. 897-903 ◽  
Author(s):  
B. G. Bentzer ◽  
G. S. Foster ◽  
A. R. Hellberg ◽  
A. C. Podzorski

Seventy-five clones of Norway spruce (Piceaabies (L.) Karst.) were tested for height, diameter, and volume at two locations in southern Sweden. Total height was measured at seven ages from age 1 to 10 years, whereas diameter at breast height was measured and volume index calculated only at age 10. Clone effects were consistently significant for all traits, whereas clone × location interaction effects only showed significance for diameter at breast height at age 10, volume index, and height at age 3. Location effects for height were small and error effects large, up to age 6. Between ages 7 and 10, location effects increased considerably, while error effects decreased correspondingly. Clone-mean heritability for height remained stable from years 3 to 10, but was slightly higher at age 1. Genetic correlations between traits were generally large, which made efficient selection for height possible as early as age 4. The correlated response in volume index at age 10, when selecting for height at age 4 or later, was exceptionally good, and it provided gain estimates in volume that were as large as or larger than estimates from direct selection for volume index at age 10.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 170
Author(s):  
Gladys N. Benitez ◽  
Glenn D. Aguilar ◽  
Dan Blanchon

The spatial distribution of corticolous lichens on the iconic New Zealand pōhutukawa (Metrosideros excelsa) tree was investigated from a survey of urban parks and forests across the city of Auckland in the North Island of New Zealand. Lichens were identified from ten randomly selected trees at 20 sampling sites, with 10 sites classified as coastal and another 10 as inland sites. Lichen data were correlated with distance from sea, distance from major roads, distance from native forests, mean tree DBH (diameter at breast height) and the seven-year average of measured NO2 over the area. A total of 33 lichen species were found with coastal sites harboring significantly higher average lichen species per tree as well as higher site species richness. We found mild hotspots in two sites for average lichen species per tree and another two separate sites for species richness, with all hotspots at the coast. A positive correlation between lichen species richness and DBH was found. Sites in coastal locations were more similar to each other in terms of lichen community composition than they were to adjacent inland sites and some species were only found at coastal sites. The average number of lichen species per tree was negatively correlated with distance from the coast, suggesting that the characteristic lichen flora found on pōhutukawa may be reliant on coastal microclimates. There were no correlations with distance from major roads, and a slight positive correlation between NO2 levels and average lichen species per tree.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3971
Author(s):  
Gabriel Silva de Oliveira ◽  
José Marcato Junior ◽  
Caio Polidoro ◽  
Lucas Prado Osco ◽  
Henrique Siqueira ◽  
...  

Forage dry matter is the main source of nutrients in the diet of ruminant animals. Thus, this trait is evaluated in most forage breeding programs with the objective of increasing the yield. Novel solutions combining unmanned aerial vehicles (UAVs) and computer vision are crucial to increase the efficiency of forage breeding programs, to support high-throughput phenotyping (HTP), aiming to estimate parameters correlated to important traits. The main goal of this study was to propose a convolutional neural network (CNN) approach using UAV-RGB imagery to estimate dry matter yield traits in a guineagrass breeding program. For this, an experiment composed of 330 plots of full-sib families and checks conducted at Embrapa Beef Cattle, Brazil, was used. The image dataset was composed of images obtained with an RGB sensor embedded in a Phantom 4 PRO. The traits leaf dry matter yield (LDMY) and total dry matter yield (TDMY) were obtained by conventional agronomic methodology and considered as the ground-truth data. Different CNN architectures were analyzed, such as AlexNet, ResNeXt50, DarkNet53, and two networks proposed recently for related tasks named MaCNN and LF-CNN. Pretrained AlexNet and ResNeXt50 architectures were also studied. Ten-fold cross-validation was used for training and testing the model. Estimates of DMY traits by each CNN architecture were considered as new HTP traits to compare with real traits. Pearson correlation coefficient r between real and HTP traits ranged from 0.62 to 0.79 for LDMY and from 0.60 to 0.76 for TDMY; root square mean error (RSME) ranged from 286.24 to 366.93 kg·ha−1 for LDMY and from 413.07 to 506.56 kg·ha−1 for TDMY. All the CNNs generated heritable HTP traits, except LF-CNN for LDMY and AlexNet for TDMY. Genetic correlations between real and HTP traits were high but varied according to the CNN architecture. HTP trait from ResNeXt50 pretrained achieved the best results for indirect selection regardless of the dry matter trait. This demonstrates that CNNs with remote sensing data are highly promising for HTP for dry matter yield traits in forage breeding programs.


2020 ◽  
Author(s):  
Edwin Lauer ◽  
Andrew Sims ◽  
Steven McKeand ◽  
Fikret Isik

Abstract Genetic parameters were estimated using a five-series multienvironment trial of Pinus taeda L. in the southern USA. There were 324 half-sib families planted in five test series across 37 locations. A set of six variance/covariance matrices for the genotype-by-environment (G × E) effect for tree height and diameter were compared on the basis of model fit. In single-series analysis, extended factor analytical models provided generally superior model fit to simpler models for both traits; however, in the combined-series analysis, diameter was optimally modeled using simpler variance/covariance structures. A three-way compound term for modeling G × E interactions among and within series yielded substantial improvements in terms of model fit and standard errors of predictions. Heritability of family means ranged between 0.63 and 0.90 for both height and diameter. Average additive genetic correlations among sites were 0.70 and 0.61 for height and diameter, respectively, suggesting the presence of some G × E interaction. Pairs of sites with the lowest additive genetic correlations were located at opposite ends of the latitude range. Latent factor regression revealed a small number of parents with large factor scores that changed ranks significantly between southern and northern environments. Study Implications Multienvironmental progeny tests of loblolly pine (Pinus taeda L.) were established over 10 years in the southern United States to understand the genetic variation for the traits of economic importance. There was substantial genetic variation between open-pollinated families, suggesting that family selection would be efficient in the breeding program. Genotype-by-environment interactions were negligible among sites in the deployment region but became larger between sites at the extremes of the distribution. The data from these trials are invaluable in informing the breeding program about the genetic merit of selection candidates and their potential interaction with the environment. These results can be used to guide deployment decisions in the southern USA, helping landowners match germplasm with geography to achieve optimal financial returns and conservation outcomes.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 380
Author(s):  
Karol Bronisz ◽  
Szymon Bijak ◽  
Rafał Wojtan ◽  
Robert Tomusiak ◽  
Agnieszka Bronisz ◽  
...  

Information about tree biomass is important not only in the assessment of wood resources but also in the process of preparing forest management plans, as well as for estimating carbon stocks and their flow in forest ecosystems. The study aimed to develop empirical models for determining the dry mass of the aboveground parts of black locust trees and their components (stem, branches, and leaves). The research was carried out based on data collected in 13 stands (a total of 38 sample trees) of black locust located in western Poland. The model system was developed based on multivariate mixed-effect models using two approaches. In the first approach, biomass components and tree height were defined as dependent variables, while diameter at breast height was used as an independent variable. In the second approach, biomass components and diameter at breast height were dependent variables and tree height was defined as the independent variable. Both approaches enable the fixed-effect and cross-model random-effect prediction of aboveground dry biomass components of black locust. Cross-model random-effect prediction was obtained using additional measurements of two extreme trees, defined as trees characterized by the smallest and largest diameter at breast height in sample plot. This type of prediction is more precise (root mean square error for stem dry biomass for both approaches equals 77.603 and 188.139, respectively) than that of fixed-effects prediction (root mean square error for stem dry biomass for both approaches equals 238.716 and 206.933, respectively). The use of height as an independent variable increases the possibility of the practical application of the proposed solutions using remote data sources.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval ◽  
Pedro Acevedo-Rodríguez

Abstract C. procera is a fleshy evergreen shrub about 1.8-5.5 m tall, with a diameter at breast height of 15-20 cm (von Maydell, 1986). The flowers are pale green to white, with purple tips. A fibre obtained from the bark is used to make lines, bow-strings and twine; it can also be spun with cotton, or used to stuff mattresses and pillows. The fibre is strengthened by soaking in water for 1-2 days, but extensive soaking may reduce durability. The wood is of small dimensions and is too light for most uses. C. procera produces a distinctive white latex, which contains cardiotoxins and hydrocarbons with many medicinal and pesticidal properties. C. procera has been widely planted for fibre production and has become naturalized on the American and Australian continents. It is often abundant on degraded areas and is an indicator of overgrazing. C. procera is a widespread pioneer in semi-desert grassland and bushland (e.g. in Africa), and it also colonizes shifting sand-dunes such as in Rajasthan, India. However, due to its properties as a pioneer, there is a risk that this species may become a weed. More research is needed on C. procera to maximize production and marketing of its many potential products.


2021 ◽  
Vol 51 ◽  
Author(s):  
Karoline Paulino Costa ◽  
Messulan Rodrigues Meira ◽  
Silma Leite Rocha ◽  
Thaíse Ohana Moura Fernandes ◽  
Ernane Ronie Martins

ABSTRACT Dimorphandra mollis is native to the Brazilian Savanna and has social, economic and environmental importance. This study aimed to evaluate the yield and diametric distribution of Dimorphandra mollis Benth. in the Pandeiros River Environmental Protection Area, in Bonito de Minas, Minas Gerais state, Brazil. Five areas were assessed, totaling five hectares (50 plots of 1,000 m2). The total number of plants, yield per plant (2018, 2019 and 2020) and diameter at breast height were recorded, considering all trees from the plots in diametric classes. The average diameter at breast height of all plants was 6.05 ± 3.07 cm, and that of the plants that produced in at least one of the evaluated years was 7.46 ± 3.15 cm. The diametric distribution showed classes with no individuals, indicating imbalance, as well as a trend to inverted “J” shape. The maximum annual yield was 8.08 kg ha-1 of dry fruits (2019), the minimum 0.42 kg ha-1 (2018), and the average 2.74 kg ha-1, with biennial characteristic.


Sign in / Sign up

Export Citation Format

Share Document