scholarly journals Non-Oscillatory Power Spectrum From States of Low Energy in Kinetically Dominated Early Universes

Author(s):  
Mercedes Martín-Benito ◽  
Rita B. Neves ◽  
Javier Olmedo

Recently, States of Low Energy (SLEs) have been proposed as viable vacuum states of primordial perturbations within Loop Quantum Cosmology (LQC). In this work we investigate the effect of the high curvature region of LQC on the definition of SLEs. Shifting the support of the test function that defines them away from this regime results in primordial power spectra of perturbations closer to those of the so-called Non-oscillatory (NO) vacuum, which is another viable choice of initial conditions previously introduced in the LQC context. Furthermore, through a comparison with the Hadamard-like SLEs, we prove that the NO vacuum is of Hadamard type as well.

2016 ◽  
Vol 25 (08) ◽  
pp. 1642003 ◽  
Author(s):  
Julien Grain

Loop Quantum Cosmology (LQC) is a tentative approach to model the universe down to the Planck era where quantum gravity settings are needed. The quantization of the universe as a dynamical spacetime is inspired by Loop Quantum Gravity (LQG) ideas. In addition, LQC could bridge contact with astronomical observations, and thus potentially investigate quantum cosmology modelings in the light of observations. To do so however, modeling both the background evolution and its perturbations is needed. The latter described cosmic inhomogeneities that are the main cosmological observables. In this context, we present the so-called deformed algebra approach implementing the quantum corrections to the perturbed universe at an effective level by taking great care of gauge issues. We particularly highlight that in this framework, the algebra of hypersurface deformation receives quantum corrections, and we discuss their meaning. The primordial power spectra of scalar and tensor inhomogeneities are then presented, assuming initial conditions are set in the contracting phase preceding the quantum bounce and the well-known expanding phase of the cosmic history. These spectra are subsequently propagated to angular power spectra of the anisotropies of the cosmic microwave background. It is then shown that regardless of the choice for the initial conditions inside the effective approach for the background evolution (except that they are set in the contracting phase), the predicted angular power spectra of the polarized [Formula: see text]-modes exceed the upper bound currently set by observations. The exclusion of this specific version of LQC establishes the falsifiability of the approach, though one shall not conclude here that either LQC or LQG excluded.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850067 ◽  
Author(s):  
Killian Martineau ◽  
Aurélien Barrau ◽  
Julien Grain

For most initial conditions, cosmologically relevant physical modes were trans-Planckian at the bounce time, often by many magnitude orders. We improve the usual loop quantum cosmology calculation of the primordial power spectra — in the inflationary framework — by accounting for those trans-Planckian effects through modified dispersion relations. This can induce drastic changes in the spectrum, making it either compatible or incompatible with observational data, depending on the details of the choices operated.


2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743023 ◽  
Author(s):  
Spyros Basilakos ◽  
Vahid Kamali ◽  
Ahmad Mehrabi

In this paper we investigate the observational signatures of Loop Quantum Cosmology (LQC) in the CMB data. First, we concentrate on the dynamics of LQC and we provide the basic cosmological functions. We then obtain the power spectrum of scalar and tensor perturbations in order to study the performance of LQC against the latest CMB data. We find that LQC provides a robust prediction for the main slow-roll parameters, like the scalar spectral index and the tensor-to-scalar fluctuation ratio, which are in excellent agreement within [Formula: see text] with the values recently measured by the Planck collaboration. This result indicates that LQC can be seen as an alternative scenario with respect to that of standard inflation.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850064 ◽  
Author(s):  
K. Kleidis ◽  
V. K. Oikonomou

In this work we investigate which Loop Quantum Cosmology (LQC)-corrected Gauss–Bonnet [Formula: see text] gravity can realize two singular cosmological scenarios, the intermediate inflation and the singular bounce scenarios. The intermediate inflation scenario has a Type III sudden singularity at [Formula: see text], while the singular bounce has a soft Type IV singularity. By using perturbative techniques, we find the holonomy-corrected [Formula: see text] gravities that generate at leading order the aforementioned cosmologies and we also argue that the effect of the holonomy corrections is minor to the power spectrum of the primordial curvature perturbations of the classical theory.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450087 ◽  
Author(s):  
Kui Xiao ◽  
Xiao-Kai He ◽  
Fei Huang ◽  
Jian-Yang Zhu

Assuming that the e-folding number is just determined by the change of the scale factor, the tachyonic inflation theory in loop quantum cosmology (LQC) has been discussed. Considering the tachyon field with exponential potential and inverse quadratic potential, we find that the evolutionary pictures of super inflation are affected by the potentials and the initial conditions. However it cannot provide enough e-folding number, no matter which condition is chosen. Therefore a slow-rolling inflation is necessary. The e-folding number for slow-rolling inflation depends on the values of the parameter α of the exponential potential and the initial conditions. To get enough e-folding number, α should be small. Based on the slow-rolling inflation happens immediately when the super inflation ends, and the scale factor continuously grows during the whole inflation stage, we consider an e-folding number provided by the whole inflationary stage, and we find that it is easier to get enough e-folding number when the scale factor increases during all the inflation phase.


2020 ◽  
Vol 35 (35) ◽  
pp. 2050293
Author(s):  
Kui Xiao ◽  
Sheng-Qin Wang

Considering a constant dissipative coefficient [Formula: see text], the pre-inflation dynamical behaviors of warm inflation in the loop quantum cosmology scenario are discussed. We consider three sets of initial conditions. The evolution of the background can always be divided into three phases, namely super-inflation, damping, and slow-roll inflation phases, with the duration of each phase depending on the initial conditions. As an example, we compare the background evolution between [Formula: see text] and [Formula: see text] under special initial conditions and find that there is no slow-roll inflation phase for [Formula: see text] while the number of e-folds is about 60.209 for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document