scholarly journals Characterization of Staphylococcus aureus Isolates From Cases of Clinical Bovine Mastitis on Large-Scale Chinese Dairy Farms

2020 ◽  
Vol 7 ◽  
Author(s):  
Kangjun Liu ◽  
Luyao Tao ◽  
Jianji Li ◽  
Li Fang ◽  
Luying Cui ◽  
...  

Bovine mastitis is a prevalent disease that causes serious economic problems globally in the dairy industry. Staphylococcus aureus is an important pathogen of bovine mastitis. This study was conducted to characterize S. aureus isolates from clinical bovine mastitis cases in large-scale dairy herds in China. S. aureus was isolated from 624 clinical mastitis cases and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In total, 62 S. aureus isolates were obtained. Cluster analysis, genetic diversity, quantification of biofilm formation, antimicrobial resistance, and detection of virulence genes were performed on these isolates of S. aureus. Eight isolates harbored the mecA gene and were sensitive to oxacillin. MALDI-TOF MS cluster analysis revealed that the 62 isolates were divided into three major clusters (I, II, III) and eight main groups (A–H) at the distance level of 700. The agr II was the most prevalent (56.5%). The 62 S. aureus isolates were assigned to seven spa types. The most common spa type was t529(58.1%), followed by t2196 (14.5%), t518 (14.5%), t571(6.5%), t034 (3.2%), t2734 (1.6%), and t730 (1.6%). Five STs were identified from seven representative isolates as follows: ST630/CC8, ST97/CC97, ST50, ST398, and ST705. All isolates had the ability to form biofilm. Antimicrobial resistance was most frequently observed to ciprofloxacin (29%), followed by penicillin (24.2%), and streptomycin (9.6%). All isolates harbored the fnbA, clfB (100%), icaA, and icaD genes. This study provides the basis for the development of bovine mastitis prevention program on large-scale dairy farms.

2018 ◽  
Vol 38 (4) ◽  
pp. 586-594 ◽  
Author(s):  
Patrícia A.C. Braga ◽  
Juliano L. Gonçalves ◽  
Juliana R. Barreiro ◽  
Christina R. Ferreira ◽  
Tiago Tomazi ◽  
...  

ABSTRACT: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been shown to be an alternative method for identification of bacteria via their protein profile spectra, being able to identify bacteria at the genus, species and even at subspecies level. With the aim of large-scale identification of pathogens causing mastitis by this platform, a total of 305 isolates of bacteria identified from cows with subclinical mastitis were analyzed by conventional microbiological culture (MC) as well as by MALDI-TOF MS coupled with Biotyper data processing. Approximately 89% of the identifications performed by MALDI-TOF MS were consistent with results obtained by MC. From the remaining isolates (11%), 6.3% of isolates were classified as misidentified (discordance for both genus and species level), and 4.7% showed identification agreement at the genus level but not at the species level, being classified as unidentified at species level. The disagreement results were mostly associated with identification of Streptococcus and Enterococcus species probably due to the narrow phenotypic similarity between these two genera. These disagreement results suggest that biochemical assays might be prone to identification errors and, MALDI-TOF MS therefore may be an alternative to overcome incorrect species-specific identification. Standard microbiological methods for bovine mastitis diagnosis are time consuming, laborious and prone to errors for some bacteria genera. In our study, we showed that MALDI-TOF MS coupled with Biotyper may be an alternative method for large-scale identification of bacteria isolated from milk samples compared to classical microbiological routine protocols.


2021 ◽  
Vol 67 (2) ◽  
pp. 3372-3382
Author(s):  
Brigitta Horváth ◽  
Ferenc Peles ◽  
Judit Gasparikné Reichardt ◽  
Edit Pocklán ◽  
Rita Sipos ◽  
...  

The presence of methicillin-resistant Staphylococcus aureus (MRSA) strains in the food chain has been confirmed by several studies in the European Union, but there are only limited data available in Hungary. The objective of the present study was to investigate the antibiotic resistance of Staphylococcus strains isolated from foods, using classical microbiological, molecular biological methods and the MALDI-TOF-MS technique, as well as the multi-locus sequence typing (MLST) of antibiotic resistant strains. During the study, 47 coagulase-positive (CPS) and 30 coagulase-negative (CNS) Staphylococcus isolates were collected. In the course of the MALDI-TOF-MS investigations, all CPS isolates (n=47) were found to be S. aureus species, while 8 different species were identified in the case of the CNS strains. Methicillin resistance was confirmed in two S. aureus strains, one of which had a sequence type not yet known, while the other MRSA strain was type ST398, which is the most common type of MRSA strain isolated from farm animals in the EU/EEA. (The abbreviation “MRSA” is often used in common parlance, but occasionally in the literature to denote “multidrug-resistant Staphylococcus aureus”. In the authors’ manuscript - the methicillin-resistant pathogen is correctly designated as such. Ed.)


2021 ◽  
Vol 67 (2) ◽  
pp. 3361-3371
Author(s):  
Brigitta Horváth ◽  
Ferenc Peles ◽  
Judit Gasparikné Reichardt ◽  
Edit Pocklán ◽  
Rita Sipos ◽  
...  

A methicillin-rezisztens Staphylococcus aureus (MRSA) törzsek élelmiszerláncban előforduló jelenlétét számos tanulmány igazolta az Európai Unióban, azonban Magyarországon kevés adat áll rendelkezésünkre ezzel kapcsolatban. Jelen vizsgálat célja az élelmiszerekből izolált Staphylococcus törzsek antibiotikum rezisztenciá-jának vizsgálata klasszikus mikrobiológiai, molekuláris biológiai módszerekkel és MALDI-TOF-MS technikával, továbbá az antibiotikum rezisztens törzsek multilókusz szekvencia tipizálása (MLST). A vizsgálat során 47 koaguláz-pozitív (CPS) és 30 koaguláz-negatív Staphylococcus (CNS) izolátumot gyűjtöttünk. A MALDI-TOF-MS vizsgálat során minden CPS izolátum (n=47) S. aureus fajnak bizonyult, míg a CNS törzsek esetében 8 különböző fajt azonosítottunk. Két S. aureus törzs esetében állapítottunk meg methicillin-rezisztenciát, amelyek közül az egyik izolátum eddig még nem ismert szekvencia típusba, míg a másik MRSA törzs az ST398 típusba tartozott, amely a mezőgazdasági haszonállatokból izolált MRSA törzsek leggyakoribb típusa az EU/EGT területén. (Az „MRSA” rövidítést köznapi szóhasználatban, de esetenként a szakirodalomban is gyakran a „multirezisztens Staphylococcus aureus” megjelölésére használják. A szerzők kéziratában - helyesen a methicillin-rezisztens kórokozót jelölik így. A Szerk.)


The Analyst ◽  
2012 ◽  
Vol 137 (2) ◽  
pp. 357-364 ◽  
Author(s):  
Judy Gopal ◽  
Hui-Fen Wu ◽  
Chia-Hsun Lee ◽  
Muthu Manikandan

2019 ◽  
Vol 7 (12) ◽  
pp. 593 ◽  
Author(s):  
Maureen Feucherolles ◽  
Henry-Michel Cauchie ◽  
Christian Penny

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is today the reference method for direct identification of microorganisms in diagnostic laboratories, as it is notably time- and cost-efficient. In the context of increasing cases of enteric diseases with emerging multi-drug resistance patterns, there is an urgent need to adopt an efficient workflow to characterize antimicrobial resistance (AMR). Current approaches, such as antibiograms, are time-consuming and directly impact the “patient-physician” workflow. Through this mini-review, we summarize how the detection of specific patterns by MALDI-TOF MS, as well as bioinformatics, become more and more essential in research, and how these approaches will help diagnostics in the future. Along the same lines, the idea to export more precise biomarker identification steps by MALDI-TOF(/TOF) MS data towards AMR identification pipelines is discussed. The study also critically points out that there is currently still a lack of research data and knowledge on different foodborne pathogens as well as several antibiotics families such as macrolides and quinolones, and many questions are still remaining. Finally, the innovative combination of whole-genome sequencing and MALDI-TOF MS could be soon the future for diagnosis of antimicrobial resistance in foodborne pathogens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chia-Ru Chung ◽  
Zhuo Wang ◽  
Jing-Mei Weng ◽  
Hsin-Yao Wang ◽  
Li-Ching Wu ◽  
...  

As antibiotics resistance on superbugs has risen, more and more studies have focused on developing rapid antibiotics susceptibility tests (AST). Meanwhile, identification of multiple antibiotics resistance on Staphylococcus aureus provides instant information which can assist clinicians in administrating the appropriate prescriptions. In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool in clinical microbiology laboratories for the rapid identification of bacterial species. Yet, lack of study devoted on providing efficient methods to deal with the MS shifting problem, not to mention to providing tools incorporating the MALDI-TOF MS for the clinical use which deliver the instant administration of antibiotics to the clinicians. In this study, we developed a web tool, MDRSA, for the rapid identification of oxacillin-, clindamycin-, and erythromycin-resistant Staphylococcus aureus. Specifically, the kernel density estimation (KDE) was adopted to deal with the peak shifting problem, which is critical to analyze mass spectra data, and machine learning methods, including decision trees, random forests, and support vector machines, which were used to construct the classifiers to identify the antibiotic resistance. The areas under the receiver operating the characteristic curve attained 0.8 on the internal (10-fold cross validation) and external (independent testing) validation. The promising results can provide more confidence to apply these prediction models in the real world. Briefly, this study provides a web-based tool to provide rapid predictions for the resistance of antibiotics on Staphylococcus aureus based on the MALDI-TOF MS data. The web tool is available at: http://fdblab.csie.ncu.edu.tw/mdrsa/.


2020 ◽  
Vol 12 (4) ◽  
pp. 340-348
Author(s):  
Daniel Joko Wahyono ◽  
Anton Budhi Darmawan ◽  
Leader Alfason ◽  
Reinhard Simbolon ◽  
Siwi Pramatama Mars Wijayanti ◽  
...  

BACKGROUND: Chronic Suppurative Otitis Media (CSOM) causes hearing impairment and frequently occurred in low-income country where medical care and personal hygiene are poor. Staphylococcus aureus and Pseudomonas aeruginosa are the most common cause of CSOM. We investigated prevalence and antimicrobial susceptibility of S. aureus and P. aeruginosa from tubotympanic CSOM patients in tertiary hospital, Purwokerto, Indonesia in 2016-2017.METHODS: Ear swab specimens were collected from patients with tubotympanic CSOM. S. aureus and P. aeruginosa were isolated and identified by culture, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and molecular tools. Antimicrobial susceptibility testing was performed using the disk diffusion method.RESULTS: Out of ear swabs from 34 patients with tubotympanic CSOM, P. aeruginosa and S. aureus were identified in 35%patients. No Methicillin-resistant S. aureus (MRSA) strain was found from the ear swabs of the patients with tubotympanic CSOM. Bacterial identification using the MALDI-TOF MS was concordantly with culture and molecular tools. All S. aureus isolates showed full susceptibility to cefoxitin and trimethoprim-sulphamethoxazole. Resistance to tetracycline was common with only 64% of S. aureus strains being susceptible. Meanwhile, all P. aeruginosa strains were susceptible to cefepime, cetazidime, meropenem, gentamicin, and tobramycin.CONCLUSION: S. aureus and P. aeruginosa are found in patients with tubotympanic CSOM and still susceptible to different antibiotic agents. MALDI-TOF MS demonstrate rapid, accurate and robust to detect S. aureus and P. aeruginosa.KEYWORDS: Staphylococcus aureus, Pseudomonas aeruginosa, chronic tubotympanic suppurative otitis media


Sign in / Sign up

Export Citation Format

Share Document