scholarly journals High-Bending-Stiffness Connector (HBSC) and High-Authority Piezoelectric Actuator (HAPA) Made of Such

Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 61
Author(s):  
Yu Huang ◽  
Yue Xia ◽  
Dian Lin ◽  
Leong-Chew Lim

High-authority piezoelectric actuator (HAPA) is a term used to describe high-performance piezoelectric actuators of relatively large displacement (≥50 μm) and high blocking force (≥100 N), but compact in size. One such piezoelectric actuator is described in this paper, which is made possible by means of high-bending-stiffness connector (HBSC) that connects multiple commercial piezoceramic stacks into a stable 2- (or multi-) level actuation configuration. Key design requirements for the HBSC are described. Computer simulation results and experimental verification are presented. A HAPA-(2 + 2) actuator was fabricated from such a HBSC, in which there are two commercial PZT stacks projecting upwards in the upper level and two projecting downwards in the lower lever, all of 5 × 5 mm2 in cross-section and 40 mm in length. The HAPA-(2 + 2) actuator prototype displays about twice the overall stroke and blocking force of individual stacks, being about 90 μm and >1600 N, respectively. This compares favorably with lever-arm, flextensional, and telescopic actuators, of which the blocking force is adversely affected. Using a similar concept, HBSCs and HAPAs of other designs are presented. In addition to being stand-alone actuators, the HAPAs can be used as the active material to drive existing displacement amplification schemes to produce piezoelectric actuators of exceptional performance characteristics.

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 34
Author(s):  
Dian-Hua Lin ◽  
Yuexue Xia ◽  
Jia-Hao Koh ◽  
Fang-Chih Lim ◽  
Leong-Chew Lim

“HAPA” stands for High-Authority Piezoelectric Actuator, which describes high-performance piezoelectric actuators of large stroke and blocking force. “HAPAs” are made possible by high-bending-stiffness connectors that connect multiple units of piezoceramic stacks into a 2-level actuation structure. Present HAPA actuators are fitted with commercial piezoceramic stacks. For instance, a “HAPA-(2+2)” comprises 4 lead zirconate titanate (PZT) stacks, 2 in the upper level with displacement projecting upward and 2 in the lower level with displacement projecting downward. They not only double the axial displacement of individual stacks with only fractional increase in device length but also are of 1.5 to 3 larger blocking force depending on the actual design. “FTA” stands for Flextensional Actuator, in which the horizontal extensional displacement of PZT stacks is amplified to yield much larger contractional vertical displacement via a diamond-shaped elastic frame structure. A range of new FTAs has been developed by us using single or multiple units of PZT stacks, of which the performances are described in this work. “HD-FTA” stands for HAPA-Driven Flextensional Actuator, in which HAPA piezoelectric actuators are used as the motor section to drive diamond-shaped elastic members of various designs for further displacement amplification. Several HD-FTAs, driven by a HAPA-(2+2) actuator, have been developed. Compared with standard FTAs of comparable stroke, HD-FTAs display a higher working load but of smaller overall length. “HAPA”, “FTA”, and “HD-FTA” piezoelectric actuators find applications when a smaller actuator length is advantageous in addition to the required moderate-to-large displacement and working load.


Author(s):  
Jianping Li ◽  
Junjie Cai ◽  
Nen Wan ◽  
Yili Hu ◽  
Jianming Wen ◽  
...  

AbstractA novel bionic piezoelectric actuator based on the walrus motion to achieve high performance on large working stroke for micro/nano positioning systems is first proposed in this study. The structure of the proposed walrus type piezoelectric actuator is described, and its motion principle is presented in details. An experimental system is set up to verify its feasibility and explore its working performances. Experimental results indicate that the proposed walrus type piezoelectric actuator could realize large working stroke with only one driving unit and one coupled clamping unit; the maximum stepping displacement is ΔLmax = 19.5 μm in the case that the frequency f = 1 Hz and the voltage U = 120 V; the maximum speed Vmax = 2275.2 μm · s−1 when the frequency f = 900 Hz and the voltage U = 120 V; the maximum vertical load mmax = 350 g while the voltage U = 120 V and the frequency f = 1 Hz. This study shows the feasibility of mimicking the bionic motion of the real walrus animal to the design of piezoelectric actuators, which is hopeful for the real application of micro/nano positioning systems to achieve large working stroke and high performance.


Author(s):  
Jinhao Qiu ◽  
Junji Tani ◽  
Teppei Morita ◽  
Hirofumi Takahashi

Abstract A new type of functionally graded (FG) piezoelectric bending actuator was proposed by the authors in the former study and the advantage of the new actuator over the traditional bimorph and unimorph actuators in internal stress distribution was illustrated by simulation results. In this study, functionally graded piezoelectric bending actuator was designed and fabricated. The material compositions with different dielectric and piezoelectric constants were selected from the Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 (PNN-PZ-PT) family and used as the four layers in the new FG piezoelectric actuator. The piezoelectric constant and dielectric constant were graded oppositely in the thickness direction. Stress distribution of the FG piezoelectric actuator under external voltage was analyzed using finite element method (FEM) and the simulation results showed the stress discontinuity of the new actuator is smaller than that of traditional bimorph actuator. Durability of the fabricated FG piezoelectric actuators was measured in a vibration test and compared with that of the traditional bimorph actuator to evaluate the improvement of performance. The results showed that the durability of the FG piezoelectric actuators is much higher than that of the bimorph actuator.


2020 ◽  
Vol 15 ◽  
Author(s):  
Weiwen Zhang ◽  
Long Wang ◽  
Theint Theint Aye ◽  
Juniarto Samsudin ◽  
Yongqing Zhu

Background: Genotype imputation as a service is developed to enable researchers to estimate genotypes on haplotyped data without performing whole genome sequencing. However, genotype imputation is computation intensive and thus it remains a challenge to satisfy the high performance requirement of genome wide association study (GWAS). Objective: In this paper, we propose a high performance computing solution for genotype imputation on supercomputers to enhance its execution performance. Method: We design and implement a multi-level parallelization that includes job level, process level and thread level parallelization, enabled by job scheduling management, message passing interface (MPI) and OpenMP, respectively. It involves job distribution, chunk partition and execution, parallelized iteration for imputation and data concatenation. Due to the design of multi-level parallelization, we can exploit the multi-machine/multi-core architecture to improve the performance of genotype imputation. Results: Experiment results show that our proposed method can outperform the Hadoop-based implementation of genotype imputation. Moreover, we conduct the experiments on supercomputers to evaluate the performance of the proposed method. The evaluation shows that it can significantly shorten the execution time, thus improving the performance for genotype imputation. Conclusion: The proposed multi-level parallelization, when deployed as an imputation as a service, will facilitate bioinformatics researchers in Singapore to conduct genotype imputation and enhance the association study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

AbstractTiOx-based resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95% in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2715
Author(s):  
Ruth Yadira Vidana Morales ◽  
Susana Ortega Cisneros ◽  
Jose Rodrigo Camacho Perez ◽  
Federico Sandoval Ibarra ◽  
Ricardo Casas Carrillo

This work illustrates the analysis of Film Bulk Acoustic Resonators (FBAR) using 3D Finite Element (FEM) simulations with the software OnScale in order to predict and improve resonator performance and quality before manufacturing. This kind of analysis minimizes manufacturing cycles by reducing design time with 3D simulations running on High-Performance Computing (HPC) cloud services. It also enables the identification of manufacturing effects on device performance. The simulation results are compared and validated with a manufactured FBAR device, previously reported, to further highlight the usefulness and advantages of the 3D simulations-based design process. In the 3D simulation results, some analysis challenges, like boundary condition definitions, mesh tuning, loss source tracing, and device quality estimations, were studied. Hence, it is possible to highlight that modern FEM solvers, like OnScale enable unprecedented FBAR analysis and design optimization.


2021 ◽  
Vol 11 (14) ◽  
pp. 6357
Author(s):  
Roberto Luigi Oliveri ◽  
Maria Grazia Insinga ◽  
Simone Pisana ◽  
Bernardo Patella ◽  
Giuseppe Aiello ◽  
...  

Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electrodes. In particular, we have obtained nanostructured electrodes in Pb and PbO2 through electrosynthesis in a template consisting of a nanoporous polycarbonate membrane. These electrodes are characterized by a wider active surface area, which allows for a better use of the active material, and for a consequent increased specific energy compared to traditional batteries. In this research, the performance of lead-acid batteries with nanostructured electrodes was studied at 10 C at temperatures of 25, −20 and 40 °C in order to evaluate the efficiency and the effect of temperature on electrode morphology. The batteries were assembled using both nanostructured electrodes and an AGM-type separator used in commercial batteries.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 288
Author(s):  
Adam Wolniakowski ◽  
Charalampos Valsamos ◽  
Kanstantsin Miatliuk ◽  
Vassilis Moulianitis ◽  
Nikos Aspragathos

The determination of the optimal position of a robotic task within a manipulator’s workspace is crucial for the manipulator to achieve high performance regarding selected aspects of its operation. In this paper, a method for determining the optimal task placement for a serial manipulator is presented, so that the required joint torques are minimized. The task considered comprises the exercise of a given force in a given direction along a 3D path followed by the end effector. Given that many such tasks are usually conducted by human workers and as such the utilized trajectories are quite complex to model, a Human Robot Interaction (HRI) approach was chosen to define the task, where the robot is taught the task trajectory by a human operator. Furthermore, the presented method considers the singular free paths of the manipulator’s end-effector motion in the configuration space. Simulation results are utilized to set up a physical execution of the task in the optimal derived position within a UR-3 manipulator’s workspace. For reference the task is also placed at an arbitrary “bad” location in order to validate the simulation results. Experimental results verify that the positioning of the task at the optimal location derived by the presented method allows for the task execution with minimum joint torques as opposed to the arbitrary position.


Sign in / Sign up

Export Citation Format

Share Document