scholarly journals Cotton Genotypic Variability for Transpiration Decrease with Progressive Soil Drying

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1290
Author(s):  
Mura Jyostna Devi ◽  
Vangimalla Reddy

Drought is a major abiotic stress factor limiting cotton yield. It is important to identify the genotypes that can conserve water under drought stress conditions and improve yield. The objective of the current study was to evaluate cotton genotypes for water conservation traits, i.e., high FTSW (Fraction of Transpirable Soil Water) threshold for transpiration. Plants utilize water slowly by declining transpiration at high FTSW and conserving soil water, which can be used by the plant later in the growing season to improve yield. Fifteen cotton varieties were selected based on their differences in transpiration response to elevated vapor pressure deficit (VPD) to study drought responses. Two pot experiments were carried out in the greenhouse to determine the FTSW threshold for the transpiration rate as the soil dried. A significant variation (p < 0.01) in the FTSW threshold values for transpiration decline was observed, ranging from 0.35 to 0.60 among cotton cultivars. Genotypes with high FTSW thresholds also displayed low transpiration under well-watered conditions. Further studies with four selected genotype contrasts in FTSW threshold values for transpiration showed differences (p < 0.05 to 0.001) in gas exchange parameters and water potentials. This study demonstrated that there are alternate traits among the cotton genotypes for enhancing soil water conservation to improve yield under water-limited conditions.

2012 ◽  
Vol 39 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Maria Balota ◽  
Steve McGrath ◽  
Thomas G. Isleib ◽  
Shyam Tallury

Abstract Water deficit, i.e., rainfall amounts and distribution, is the most common abiotic stress that limits peanut production worldwide. Even though extensive research efforts have been made to improve drought tolerance in peanut, performance of genotypes largely depends upon the environment in which they grow. Based on greenhouse experiments, it has been hypothesized that stomata closure under high vapor pressure deficit (VPD) is a mechanism of soil water conservation and it has been shown that genotypic variation for the response of transpiration rate to VPD in peanut exists. The objective of this study was to determine the relationship between stomatal conductance (gs) and VPD for field grown peanut in Virginia-Carolina (VC) rainfed environments. In 2009, thirty virginia-type peanut cultivars and advanced breeding lines were evaluated for gs at several times before and after rain events, including a moisture stress episode. In 2010, eighteen genotypes were evaluated for gs under soil water deficit. In 2009, VPD ranged from 1.3 to 4.2 kPa and in 2010 from 1.78 to 3.57 kPa. Under water deficit, genotype and year showed a significant effect on gs (P  =  0.0001), but the genotype × year interaction did not. During the water deficit episodes while recorded gs values were relatively high, gs was negatively related to VPD (R2  =  0.57, n  =  180 in 2009; R2  =  0.47, n  =  108 in 2010), suggesting that stomata closure is indeed a water conservation mechanism for field grown peanut. However, a wide range of slopes among genotype were observed in both years. Genotypes with significant negative relationships of gs and VPD under water deficit in both years were Florida Fancy, Gregory, N04074FCT, NC-V11, and VA-98R. While Florida Fancy, Gregory, and NC-V11 are known to be high yielding cultivars, VA-98R and line N04074FCT are not. The benefit of stomatal closure during drought episodes in the VC environments is further discussed in this paper.


2020 ◽  
Author(s):  
Haiqiang Gao ◽  
Shuguang Liu

&lt;p&gt;China has implemented an ambitious ecological project Grain for Green Project (GGP) on the Loess Plateau (LP) at the end of last century. The GGP was to increase vegetation coverage, reduce soil and water erosion and store Carbon by converting croplands on steep slopes barren hills and wasteland to forests. Assessing the ecological effects of GGP correctly could improve vegetation restoration activities worldwide. In this study, two major ecological indicators (vegetation restoration and soil &amp; water conservation) were used to evaluate the ecological benefits of GGP from 1982 to 2017. Our results show that the vegetation growth for most pixels of LP region have significantly increased at 21 century, annual growth rates of fraction of absorbed photosynthetically active Radiation (FPAR) in spring, summer, autumn and active growing season are 1.39, 4.49, 2.14 and 1.47, respectively. For leaf area index (LAI), these growth rates are 6.01, 20.06, 8.11 and 6.90, respectively. And for normalized difference vegetation index (NDVI), growth rates are 6.30, 25.46, 7.99 and 20.43, respectively. While the soil and water condition has differently changed, annual growth rates of soil moisture (SM) are 4.46, 2.79 and 2.30 for summer, active growing season and whole year, respectively. The coordinated responses of vegetation and soil &amp; water condition suggest that the interaction between organisms (vegetation, animal and human) and environment (soil, water and so on) in the process of vegetation restoration should be further recognized to evaluate the benefits of ecological engineering more comprehensively.&lt;/p&gt;


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 779G-780
Author(s):  
Larry E. Williams

A study was conducted to determine the effects of crop removal on gas exchange parameters of `Thompson Seedless' grapevines grown in the San Joaquin Valley of California. Vines were either irrigated at full ET or not irrigated throughout the growing season. Clusters were removed subsequent to veraison, when the fruit soluble solids were ≈15° Brix. Reductions in leaf net CO2 assimilation rate (A) were measured within 1 day of fruit removal for both irrigation treatments and remained such until the end of the experiment. The greatest reduction in A due to crop removal on a diurnal basis was with the non-irrigated vines between 0800 and 1000 hr. The reduction in A subsequent to crop removal was not the result of an accumulation of either starch or sugars in leaf tissue. The greater reduction in A of non-irrigated vines after fruit removal may have been due to the lack of strong, alternate sinks as vegetative growth was minimal due to water stress during the experimental period.


2004 ◽  
Vol 28 (1) ◽  
pp. 66-72
Author(s):  
ZHANG Guang-Can ◽  
LIU Xia ◽  
HE Kang-Ning ◽  
WANG Bai-Tian

Revista CERES ◽  
2015 ◽  
Vol 62 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Ricardo Antonio Marenco ◽  
Nilvanda dos Santos Magalhães ◽  
Paula Romenya dos Santos Gouvêa ◽  
Saul Alfredo Antezana-Vera

Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04). Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K), the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003). At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qiu Xinqiang ◽  
Zhang Yushun ◽  
Qin Haixia ◽  
Wang Min ◽  
Wang Yanping ◽  
...  

Drought significantly threatens crop productivity and food security worldwide. However, the severity of drought is predicted to increasingly intensify in the future. To provide an antidrought strategy for farmers and breeders, the response of stomatal behavior of crops to water stress should be well studied. In this study, a lysimeter experiment was conducted to study the relationship between gas exchange parameters and grain yields of winter wheat. Light, moderate, and severe drought levels were imposed at seedling, jointing, heading, and filling stages. The results showed that crop evapotranspiration (ETc, mm) of winter wheat during the entire growing season was limited by drought imposed at any growth stage, and ETc under severe drought treatment was always the lowest. The stomatal limitation value had a significant linear correlation with the stomatal conductance (Gs, μmol mol H2O m–2 s–1) and transpiration rate (Tr, mmol H2O m–2 s–1). Light and moderate drought levels at the seedling stage did not generate irreversible physiological stress on wheat plants, while severe drought at any growth stage caused significant reduction in gas exchange parameters and grain yields. Theoretical threshold values of leaf water use efficiency (WUEl) for light, moderate, and severe drought levels were 2.62, 3.36, and 4.11 μmol mmol–1, respectively. The threshold values are useful to provide theoretical reference for achieving smart irrigation in the North China Plain.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2145-2150 ◽  
Author(s):  
Rashid Al-Yahyai ◽  
Bruce Schaffer ◽  
Frederick S. Davies

Two-year-old `Arkin' carambola (Averrhoa carambola L.) trees were grown in containers in a greenhouse and the field in a very gravelly loam soil. Trees in the field were subjected to four soil water depletion (SWD) levels which averaged, 10.5%, 26.5%, 41.0%, and 55.5% and trees in the greenhouse were maintained at field capacity or dried continuously to produce a range of SWD levels. The relationships between SWD and leaf (ΨL) and stem (Ψs) water potential, net CO2 assimilation (ACO2), stomatal conductance of water (gs) and transpiration (E) were determined. Coefficients of determination values between physiological variables were higher for trees in the greenhouse than in the field, which may have been due to greater fluctuations in vapor pressure deficit (VPD) in the field. Soil water depletion levels above 50% caused a reduction in Ψs that subsequently decreased gs. This reduction in Ψs was correlated with a linear reduction in E and a considerable decline in ACO2 when gs fell below about 50 mmol·m–2 ·s–1. Leaf gas exchange parameters were better correlated with Ψs than with SWD level. Therefore, Ψs may be a better predictor of carambola tree water status than SWD in a well-drained, very gravelly loam soil.


2012 ◽  
Vol 63 (2) ◽  
pp. 127-133
Author(s):  
Agnieszka Pszczółkowska ◽  
Gabriel Fordoński ◽  
Jacek Olszewski ◽  
Tomasz Kulik ◽  
Iwona Konopka

The present study investigated the effect of different soil moisture content levels (60 - 70% SWC (soil water capacity) - control; 30 - 35% SWC - water stress) on yields, gas exchange parameters, seed health, and protein fractions of husked oat grain. The study showed that water deficit resulted in a decrease in grain weight per plant and a reduction in the gas exchange rates, primarily the photosynthesis and transpiration rates. <i>Cladosporium cladosporioides</i> was the dominant species on oat kernels in both experimental treatment options and in both years of the study. The presence of <i>Fusarium poae</i> was also found. Higher contents of prolamin, albumin and globulin fractions were found in the oat grain harvested from plants grown under soil water deficit conditions.


Sign in / Sign up

Export Citation Format

Share Document