scholarly journals Feeding Value Assessment of Substituting Cassava (Manihot esculenta) Residue for Concentrate of Dairy Cows Using an In Vitro Gas Test

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Yuhui Zheng ◽  
Yanyan Zhao ◽  
Shenglin Xue ◽  
Wei Wang ◽  
Yajing Wang ◽  
...  

The feeding value of replacing concentrate with cassava (Manihot esculenta) residue in the feed of Holstein cows was confirmed using an in vitro gas test. The treatments consisted of 0% (control, CON), 5%, 10%, 15%, 20%, 25%, and 30% inclusion of cassava residue in fermentation culture medium composed of buffer solution (50 mL) and filtrated rumen fluid (25 mL). The parameters analyzed included the kinetics of gas production and fermentation indexes. Forty-eight hours later, there were no significant differences on in vitro dry matter disappearance (IVDMD), pH, and microbial crude protein (MCP) content among treatments (p > 0.05). However, the “cumulative gas production at 48 h” (GP48), the “asymptotic gas production” (A), and the “maximum gas production rate” (RmaxG) all increased linearly or quadratically (p < 0.01). The GP48 was significantly higher in the 25% treatment compared to the other treatments, except for the 30% (p < 0.01). The A was significantly larger in the 25% treatment compared to the other treatments, except for the 20% and 30% (p < 0.01). The RmaxG was distinctly larger in the 25% treatment compared to other treatments (p < 0.01); moreover, the “time at which RmaxG is reached” (TRmaxG) and the “time at which the maximum rate of substrate degradation is reached” (TRmaxS) were significantly higher in the 25% treatment than the CON, 20%, and 30% treatments (p < 0.01). Additionally, the content of ammonia-N (NH3-N) in all treatments showed linearly and quadratically decreases (p < 0.01), whereas total volatile fatty acid (VFA), iso-butyrate, butyrate, and iso-valerate contents changed quadratically (p = 0.02, p = 0.05, p = 0.01, and p = 0.02, respectively); all of these values peaked in the 25% treatment. In summary, the 25% treatment was associated with more in vitro gas and VFA production, indicating that this cassava residue inclusion level may be used to replace concentrate in the feed of Holstein cows. However, these results need to be verified in vivo.

2021 ◽  
Vol 888 (1) ◽  
pp. 012076
Author(s):  
H Soetanto ◽  
RM Aprilia ◽  
MS Pramita ◽  
I Banna

Abstract This study aimed at elucidating the use of three different rumen fluid (RF) of indigenous cattle breeds i.e. Bali, Madura and Crossbred Ongole immediately after slaughtered at abattoir to evaluate the nutritive value of elephant grass( EG) -concentrate mixture using a standard in vitro gas production (IVGP) technique. Approximately 500 mg feed dry matter/syringe was added with 50 ml RF-buffer solution and incubated in a 39 0C water bath for 48 hours where gas production was observed at time intervals. Following termination of incubation the content was transferred into tare glass crucible to measure rumen dry matter (RDMD) and organic matter (ROMD) digestibility. The results showed that there was no significant different (P>0.05) in gas production parameters. In contrast, RDMD and ROMD differed significantly (P<0.01) among cattle breeds. RF from OCB resulted in the highest IVGP, RDMD and ROMD as compared with other RF sources. In conclusion, the use of RF from abattoir for IVGP measurement can be warranted using the same source of RF. The highest values resulted from OCB suggests that the abundance and variation in rumen microbiota may exist among cattle breeds.


1983 ◽  
Vol 34 (3) ◽  
pp. 289 ◽  
Author(s):  
B Tangendjaja ◽  
JP Hogan ◽  
RBH Wills

Samples of rumen fluid obtained from sheep that had been fed on different diets were fractionated into microorganism and supernatant fractions, and the former divided into bacteria-rich and protozoa-rich fractions. The fractions were evaluated for their ability to degrade purified mimosine during in vitro incubation. The rumen contents of sheep fed on a lucerne-oats mixture produced a more rapid degradation of mimosine than did that from sheep fed on lucerne hay, which was greater than that from a Digitaria pentrii diet. Most activity was in the bacteria-rich fraction for the lucerne-oats diet and in the protozoa-rich fraction for the other diets. The rate of degradation of endogenous mimosine in Leucaena leaf during incubation in ruinen fluid was much greater than for the purified mimosine. The substantial degradation observed when a buffer solution was substituted for rumen fluid was attributed to endogenous leaf enzymes. These enzyme systems were more efficient at degrading mimosine than were the microorganisms in the rumen liquor.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 893 ◽  
Author(s):  
Yuhui Zheng ◽  
Shenglin Xue ◽  
Yanyan Zhao ◽  
Shengli Li

This study was conducted to investigate the effect of using cassava residue to replace crushed maize on in vitro fermentation characteristics of dairy cows at mid-lactation and provide guidance for its utilization. The study included seven treatments with four replicates, which used 0% (control, CON), 5%, 10%, 15%, 20%, 25% and 30% cassava residue to replace crushed maize (air-dried matter basis), respectively. A China-patented automated trace gas recording system was used to perform in vitro gas tests; rumen fluids were collected from three dairy cows at mid-lactation. In vitro dry matter digestibility (IVDMD), gas production (GP), pH, ammonia–N (NH3-N) and microbial protein (MCP) content were analyzed after in vitro incubating for 3, 6, 12, 24 and 48 h, respectively; volatile fatty acid (VFA) content was analyzed after in vitro culturing for 48 h. The results showed that with the increase of substitution ratio of cassava residue, the asymptotic gas production (A) increased quadratically (p < 0.05), cumulative gas production at 48 h (GP48) and the maximum rate of substrate digestion (RmaxS) increased linearly and quadratically (p < 0.05), the time at which the maximum gas production rate is reached (TRmaxG) increases linearly (p < 0.05). In addition, asymptotic gas production in 30% was significantly higher than the other treatments (p < 0.05), RmaxS in 25% and 30% were significantly higher than CON, 5% and 10% (p < 0.05). In addition, with the increase of substitution ratio of cassava residue, when in vitro cultured for 6 h and 12 h, NH3–N content decreased linearly and quadratically (p < 0.05). NH3–N content in 30% was significantly lower than the other treatments except 20% and 25% (p < 0.05) after cultivating for 6 h. Moreover, the content of iso-butyrate, iso-valerate, valerate and total VFA (tVFA) decreased linearly and quadratically (p < 0.05), acetate decreased quadratically (p < 0.05) with the increase of substitution ratio of cassava residue. In conclusion, when the cassava residue substitution ratio for crushed maize was 25% or less, there were no negative effects on in vitro ruminal fermentation characteristics of dairy cows at mid-lactation.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 296-296
Author(s):  
Genet Mengistu ◽  
Tim A McAllister ◽  
Kim Ominski ◽  
Gabriel O Ribeiro ◽  
Erasmus Okine ◽  
...  

Abstract This study evaluated the impact of adding biochar to a grass hay-based diet on in vitro dry matter disappearance (DMD), total gas production (GP), methane production (CH4), volatile fatty acid (VFA) and ammonia nitrogen (NH3-N) concentration. Treatments were arranged in a factorial design with 7 biochar products differing in origin (pine or coconut-based) and physical properties (course, fine or loose spheres) at 2 inclusion levels (2.25% and 4.5% of DM) and a grass hay-only control. On each three successive weeks, rumen fluid was collected from 2 ruminally cannulated beef heifers fed a grass hay-based diet, pooled and mixed with a buffer solution (1:2) and treatments incubated in triplicate for 48 h. Gas pressure was recorded at 3, 6, 9, 12, 18, 24, 36 and 48 h of incubation, and gas was collected at each time to measure CH4. At 48 h, pH was measured and the supernatant sampled for determination of VFA and NH3-N, while the residue was used to estimate DMD. Dry matter disappearance decreased (P &lt; 0.05) with increasing addition of biochar. Biochar did not affect GP or CH4, but did reduce (P &lt; 0.05) gas production per g of DM incubated (111.7 vs 107.8 ml/g), but not per g DMD. The lower GP per g DM incubated could be related to the increased proportion of the diet as biochar, without it contributing to GP. Biochar, irrespective of level did not affect the total or molar proportions of VFA. There was a biochar x inclusion level interaction (P &lt; 0.04) in NH3-N concentration. Biochar type and inclusion level in the present study had little or no significant effect on in vitro fermentation and did not mitigate CH4 production from a grass hay-based diet.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Sindu Akhadiarto ◽  
A Fariani

The objective of this research was to study digestibility of kumpai minyak (Hymenachne amplexicaulis) amoniation by in vitro techniques. Materials used in this study were : kumpai oil grass; poultry manure; urea; cattle rumen fluid; Mc buffer solution Dougall; NaOH or H3PO4 and saturated HgCl2. This research was held in two stage, the first was amoniation of kumpai minyak and second was in vitro analysis, both experiment was held at laboratory of Nutrition and Feed Animal, Agriculture Faculty at Sriwijaya University. The research used completely randomized design with 4 treatments and 4 replications which were: A0 (kumpai oil grass without urea), A1 (kumpai oil grass with urea 2%), A2 (kumpai oil grass with urea 4%) and A3 (kumpai oil grass with urea 6%). Parameters measuredwere dry matter digestibility, organic matter digestibility and gas production.. The result showed that the treatment were significantly difference (P<0.01) on organic matter digestibility, but non sinificantly differences (P>0.01) on dry matter digestibility and gas production.


2005 ◽  
Vol 123-124 ◽  
pp. 107-118 ◽  
Author(s):  
Gonzalo Hervás ◽  
Pilar Frutos ◽  
F. Javier Giráldez ◽  
Manuel J. Mora ◽  
Begoña Fernández ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 466-466
Author(s):  
Angela R Boyer ◽  
Yun Jiang ◽  
Alon Blakeney ◽  
Dennis Nuzback ◽  
Brooke Humphrey ◽  
...  

Abstract Vistore® minerals are hydroxychloride minerals that feature high metal content and improved bioavailability. This study was conducted to compare different sources of zinc (Zn) on in vitro rumen fermentation parameters. Three ruminally-cannulated Jersey heifers were adapted to a lactation diet for two weeks before used as donors. Three sources of Zn were tested at 20 ppm: No supplemental Zn (CON), ZnSO4, Vistore Zn, and another Zn hydroxychloride (Vistore-competitor). The concentration of Zn in this study was selected from a titration study (0 to 40 ppm ZnSO4) to identify the minimum concentration of ZnSo4 affecting rumen fermentation. The lactation diet (TMR) was dried and ground to 1mm and used as substrate. Rumen fluid was collected two hours after feeding. Substrate (0.5 g) was inoculated with 100 mL of 3:1 McDougall’s buffer: ruminal flued mixture at 39ºC for 24 h. Each treatment was run in triplicate and in three runs. Data were analyzed with R 3.0. The model included fixed effect of treatment and random effect of run. ZnSO4 reduced (P &lt; 0.05) maximum gas production, DMD (54 vs. 55.9%) and cellulose (27.5 and 40.7%) digestibility. acetate to propionate ration (2.20 vs. 2.24) and NH3-N concentration (6.0 vs. 7.0 mg/dL), increased (P &lt; 0.05) propionate % (27.2 vs 26.7%) compared to control. Vistore had higher pH than control (6.44 vs. 6.40, P = 0.02) but did not affect other parameters compared to CON. Vistore-competitor reduced total VFA production compared to control, ZnSO4, and Vistore (94 vs. 102, 106 and 107 mM, respectively, P = 0.01) but did not affect other parameters. In general, Vistore Zn maintained in vitro ruminal fermentation and digestibility, while ZnSO4 had negative effects on both fermentation and digestibility and Vistore-competitor reduced total VFAs. Results indicate hydroxychloride minerals may stabilize rumen parameters versus sulfate sources but different hydroxychloride sources appear to influence rumen parameters differently.


2011 ◽  
Vol 11 (2) ◽  
pp. 29-34 ◽  
Author(s):  
Novita Hindratiningrum ◽  
Muhamad Bata ◽  
Setya Agus Santosa

Products of rumen fermentation and protein microbial of dairy cattle feed with rice bran ammonization and some feedstuffs as an energy sourcesABSTRACT. This study aims to examine the energy sources of feed ingredients that can increase the production of Volatile Fatty Acids (VFA), N-NH3, microbial protein synthesis, total gas production and metabolic energy. The material used is as a source of rumen fluid inoculum from Frisian Holstein cows (FH) females, amoniasi rice straw, salt, mineral mix brand "Ultra Minerals' production Eka Farma Semarang, onggok wet and dry, corn, and rice bran. Observed variable is the concentration of (VFA), N-NH3, rumen microbial protein synthesis, and total gas production. Based on the analysis of diversity seen any significant effect (P0.05) on total VFA concentration, N-NH3 and total gas but had no effect (P0.05) on microbial protein synthesis. Conclusion of research is the provision of energy sources with rice bran treatment, onggok wet and dry corn flour can be used as fermentable carbohydrates on feed hay amoniasi in vitro.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 427-428
Author(s):  
Richard R Lobo ◽  
Marcos I Marcondes ◽  
Paulo H Rodrigues ◽  
Antonio Faciola ◽  
Rafael Pinheiro ◽  
...  

Abstract The objective was to identify the non-linear model with the best fit for cumulative gas production from fermentation of fresh alfalfa, with or without tannin extract, incubated with rumen fluid from five different species of ruminants. Fifteen animals (Taurine and Zebuine cattle, water buffaloes, sheep and goats) were used as inoculum donors. During incubation, 500 mg of fresh alfalfa, with or without 150 mg of acacia tannin extract, were used as substrate in the semi-automated gas production technique. Experimental design was completely randomized in a factorial arrangement with five inoculum sources (ruminant specie) and two treatments (with or without tannin extract). We used the PROC NLMIXED to fit ten mathematical models and the best one was chosen based on the lowest AIC and MSE and highest R2. Lastly, the best model was validated using the cross validation technique. The model with the best fit was the Groot model (AIC 1255.5; MSE 174.01; R2 0.9496) comparatively to others methods and the most part of error is from random effect (97.7%). Tannin inclusion reduced parameters potential gas production (A) and time to produce half of total gas production (T1) (P &gt; 0.0001); however, no difference was observed on the gas production rate (k) (P &gt; 0.1181). When no tannin was added, differences between the two cattle category were observed. Comparing water buffaloes’ inoculum with Taurine inoculum, no differences were observed for “A,” however, this parameter differed among water buffaloes and Zebuine cattle. In conclusion, Groot model had the best fit on in vitro bioassay with alfalfa substrate and treated or not with tannin extract. The tannin extract reduced the potential gas production; however, it did not change the gas production rate. For evaluation of alfalfa by cumulative gas production technique, the potential gas production was changed by using different animal categories as inoculum donor.


2002 ◽  
Vol 2002 ◽  
pp. 166-166 ◽  
Author(s):  
M. Afdal ◽  
F.L. Mould ◽  
C. Rymer ◽  
E. Owen ◽  
D.I. Givens

Considerable efforts have been made regarding the use of faecal material to provide a microbial inoculum for in vitro feed evaluation systems. However total gas production, rate of gas release and the extent of degradation of feeds incubated using faecal inoculum are lower than those incubated in a rumen fluid medium. It has been suggested that this is due to lower microbial activity, a consequence of the different microflora and reduced microbial numbers (e.g. Mauricio, 1999). Microbial populations are dynamic so, as their enzyme activity profiles change rapidly, little information is obtained from examining these. However, their hydrolytic activity as reflected by their ability to degrade specific substrates can be simply measured and provides a potential method with which to assess the quality of inocula with respect to their use in in vitro systems. The data presented here are from a larger study in which the differences between the hydrolytic activity of faecal material and rumen contents as influenced by the time of sampling were assessed in vitro.


Sign in / Sign up

Export Citation Format

Share Document