scholarly journals Inbreeding Coefficient and Distance in MHC Genes of Parents as Predictors of Reproductive Success in Domestic Cat

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 165
Author(s):  
Mariya N. Erofeeva ◽  
Galina S. Alekseeva ◽  
Mariya D. Kim ◽  
Pavel A. Sorokin ◽  
Sergey V. Naidenko

Inbreeding and low diversity in MHC genes are considered to have a negative effect on reproductive success in animals. This study presents an analysis of the number and body mass of offspring in domestic cat, depending on the inbreeding coefficient and the degree of similarity in MHC genes of class I and II in parents. Inbred partners had a lower number of live kittens at birth than outbred ones. At the same time, the inbreeding coefficient did not affect the litter size and the number of offspring who survived until the period of transition to solid food. The most significant predictor for the number of surviving offspring was the degree of parental similarity in MHC genes: the parents with the maximum distance in MHC genes had more survived kittens. Moreover, this effect was most pronounced immediately after birth. A significant percentage of kittens from parents with a minimum distance in MHC genes were either stillborn or died on the first day after birth. By the age of transition to solid food, this effect is no longer so pronounced. Furthermore, neither the inbreeding coefficient nor the distance in MHC genes of parents had any effect on the body mass of kittens.

2018 ◽  
Vol 8 (1) ◽  
pp. 10-19
Author(s):  
Amra Mačak Hadžiomerović ◽  
Amila Jaganjac ◽  
Dijana Avdic ◽  
Emira švraka ◽  
Arzija Pašalić ◽  
...  

Introduction: The most common health problem associated with the negative effect of heavy school bags is back pain, and non-specific back pain is frequently observed in childhood. The prevalence of back pain in schoolchildren varies from 12% to 92%, depending on the age and affected region of the back. To prevent the occurrence of back pain in schoolchildren, the weight of school bag should not exceed 10% of the child’s body mass.Methods: This was a descriptive, cross-sectional study conducted in April 2017. We included 79 students of the fifth and sixth grade from the elementary school in Sarajevo. Information on the weight and type of school bag, method of carrying a school bag, and feelings of pain and tiredness due to school bag were obtained by questionnaire.Results: In the total sample, the majority of the students (64.6%) reported occasional back pain while carrying the bag, 20.3% of students reported no back pain, and 11.4% of students experienced frequent back pain. The mean school bag weight in the fifth grade was 4.01 ± 0.57 kg, and it was significantly higher (4.61 ± 0.86 kg) in the sixth grade. About 48.5% of the students in the fifth and 50% in the sixth grade carried school bags weighing more than 10% of the body mass. A higher mean weight of school bag was significantly more frequent in students who reported always feeling tired (11.03 ± 2.74%) compared to those who did not feel tired while carrying the school bag (8.41 ± 2%).Conclusions: Overall, more frequent occurrence of back pain and tiredness in schoolchildren was associated with heavier school bags (>10% of the body mass), and the occurrence of back pain due to school bag was related to gender (i.e., back pain was more common in girls compared to boys).


2019 ◽  
Vol 98 (7) ◽  
pp. E81-E86 ◽  
Author(s):  
Mehmet Surmeli ◽  
Ildem Deveci ◽  
Hasan Canakci ◽  
Mustafa Salih Canpolat ◽  
Burak Karabulut ◽  
...  

In this study, we aimed to investigate the relationship between the body mass index (BMI) and the morphometric properties of auricula and its acoustic gain characteristics. A total of 45 participants between 18 and 45 years of age were enrolled into the study. Participants’ height and weight measurements were recorded for the BMI calculation. On both sides, the morphometric properties of the auricula were measured and recorded. Additionally, the participants were subjected to multidirectional dynamic real ear measurements (REMs) to specify the intensity and frequency values of the maximum hearing gain. Participants consisted of 24 women and 21 men. The mean BMI was 23.42. The mean auricular area was 22.70 cm2. Statistically significant positive correlation was found between the auricular area and BMI ( r = 0.427, P = .03). The mean postauricular sulcus angle was 20.99°. The mastoid-helix distance was 16.07 mm. There was no statistically significant correlation between BMI level and postauricular sulcus angle and mastoid-helix distance ( P > .05). The mean dynamic REM measurement was evaluated. The maximum acoustic gain at anterior, lateral, and posterior vectorial stimulation was calculated as 20.9, 24.2, and 20.7 dB Sound Presure Level (SPL), respectively. Statistically significant negative correlation was found between the three directions acoustic gain level and BMI in the statistical examination ( r = −0.365, r = −0.386, r = −0.453, respectively, and P < .05 for all). The results of acoustic gain frequency were 2967.4, 2963, and 2934 Hz, respectively. There was no statistically significant correlation between acoustic gain frequency and BMI ( P > .05). When participants were grouped according to their BMI, participants with a BMI >25 had a statistically significantly bigger auricular area and lower maximum acoustic gain when compared with those with BMI <25 ( P < .05). We found that the auricular area increased with BMI. We think that this is related to soft tissue thickening of the auricula related to high BMI. In addition, we found that the acoustic gain level decreased inversely with BMI. We believe that the decrease in acoustic gain is due to the increase of acoustic resistance after the increase of soft tissue thickness. In conclusion, we think that BMI has a negative effect on auditory function according to findings in our study.


2001 ◽  
Vol 79 (9) ◽  
pp. 1661-1670 ◽  
Author(s):  
Mylène LeBlanc ◽  
Marco Festa-Bianchet ◽  
Jon T Jorgenson

Sexual dimorphism is an important characteristic of many mammals, but little is known about how environmental variables may affect its phenotypic expression. The relationships between population size, body mass, seasonal mass changes, and sexual mass dimorphism were investigated using 22 years of data on individually marked bighorn sheep (Ovis canadensis) on Ram Mountain, Alberta. The number of adult ewes was artificially maintained low from 1972 to 1981 and then allowed to increase. The body mass of males from 0 to 7 years of age was negatively affected by population density. Female body mass was negatively affected by population density up to 2 years of age. As the number of ewes increased, sexual mass dimorphism of sheep aged 2–7 years declined. Population density had a negative effect on seasonal mass changes of young males and females. Density also had a weak but significant positive effect on yearly mass gain of 2-year-old females, suggesting compensatory growth. Females appear to compensate for resource shortages early in life, while males show a lifelong negative effect. We suggest that these sexual differences are due to the greater flexibility of resource allocation to growth or reproduction by females than by males.


2016 ◽  
Author(s):  
Mauricio González-Forero ◽  
Timm Faulwasser ◽  
Laurent Lehmann

AbstractMathematical modeling of brain evolution is scarce, possibly due in part to the difficulty of describing how brain relates to fitness. Yet such modeling is needed to formalize verbal arguments and deepen our understanding of brain evolution. To address this issue, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain’s energetic expense is due to production (learning) and maintenance (memory) of skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. Our model can be used to ask what fraction of growth energy should be allocated to the growth of brain and other tissues at each age under various biological settings as a result of natural selection. We apply the model to find uninvadable allocation strategies under a “me-against-nature” setting, namely when overcoming environmentally determined energy-extraction challenges does not involve any interactions with other individuals (possibly except caregivers), and using parameter values for modern humans. The uninvadable strategies yield predictions for brain and body mass throughout ontogeny, as well as for the ages at maturity, adulthood, and brain growth arrest. We find that (1) a me-against-nature setting is enough to generate adult brain and body mass of ancient human scale, (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory, and (3) adult skill number is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills. Overall, our model is a step towards a quantitative theory of brain life history evolution yielding testable quantitative predictions as ecological, demographic, and social factors vary.Author SummaryUnderstanding what promotes the evolution of a given feature is often helped by mathematical modeling. However, mathematical modeling of brain evolution has remained scarce, possibly because of difficulties describing mathematically how the brain relates to reproductive success, which is the currency of evolution. Here we combine elements of two research fields that have previously been successful at detailing how a feature impacts reproductive success (life history theory) and at predicting the individual’s body mass throughout its life without the need to describe in detail the inner workings of the body (metabolic theory). We apply the model to a setting where individuals must extract energy from the environment without interacting with other individuals except caregivers (“me-against-nature”) and parameterize the model with data from humans. In this setting, the model can correctly predict a variety of human features, including large brain sizes. Our model can be used to obtain testable quantitative predictions in terms of brain mass throughout an individual’s life from assumed hypotheses promoting brain evolution, such as harsh environments or plentiful social interactions.


Parasitology ◽  
2010 ◽  
Vol 137 (11) ◽  
pp. 1687-1694 ◽  
Author(s):  
J. T. TIMI ◽  
A. L. LANFRANCHI ◽  
R. POULIN

SUMMARYNarrow site specificity in parasites is assumed to be associated with fitness benefits, such as higher reproductive success, although this is never quantified. We linked the body mass and combined mass of egg sacs of female copepods, Neobrachiella spinicephala, parasitic on the sandperch, Pinguipes brasilianus, to attachment sites on the host. Adult females attach permanently either on the lips, the margins of the operculum, or the base of pectoral or pelvic fins. In addition to influences of sampling site, season and host body length, our analyses revealed important fitness effects. First, attachment site significantly influenced copepod body mass; independent of other factors, copepods at the base of fins were 32% larger than those on the lips or operculum. Second, the mass of egg sacs was almost always greater if the copepod was attached at the base of fins rather than to the lip or operculum. Thus, a female weighing 6 mg would, on average, produce 40% larger egg sacs if attached to the base of fins. However, copepods were much more likely to attach at the base of fins on small fish, and on either the lip or the operculum on large fish. We propose that constraints varying with fish size account for the shift from optimal to suboptimal attachment sites as a function of increasing host size. By measuring differences in fitness components between attachment sites, our approach allows hypothesis testing regarding microhabitat selection.


2007 ◽  
Vol 177 (4S) ◽  
pp. 64-64
Author(s):  
Murugesan Manoharan ◽  
Martha A. Reyes ◽  
Alan M. Nieder ◽  
Bruce R. Kava ◽  
MarkS Soloway

Author(s):  
K. Subramanyam ◽  
Dr. P. Subhash Babu

Obesity has become one of the major health issues in India. WHO defines obesity as “A condition with excessive fat accumulation in the body to the extent that the health and wellbeing are adversely affected”. Obesity results from a complex interaction of genetic, behavioral, environmental and socioeconomic factors causing an imbalance in energy production and expenditure. Peak expiratory flow rate is the maximum rate of airflow that can be generated during forced expiratory manoeuvre starting from total lung capacity. The simplicity of the method is its main advantage. It is measured by using a standard Wright Peak Flow Meter or mini Wright Meter. The aim of the study is to see the effect of body mass index on Peak Expiratory Flow Rate values in young adults. The place of a study was done tertiary health care centre, in India for the period of 6 months. Study was performed on 80 subjects age group 20 -30 years, categorised as normal weight BMI =18.5 -24.99 kg/m2 and overweight BMI =25-29.99 kg/m2. There were 40 normal weight BMI (Group A) and 40 over weight BMI (Group B). BMI affects PEFR. Increase in BMI decreases PEFR. Early identification of risk individuals prior to the onset of disease is imperative in our developing country. Keywords: BMI, PEFR.


Physiotherapy ◽  
2013 ◽  
Vol 21 (3) ◽  
Author(s):  
Marzena Ślężyńska ◽  
Grzegorz Mięsok ◽  
Kamila Mięsok

AbstractIntroduction: The aim of the physical activity of the intellectually disabled is the strengthening of health, creating movement habits, promoting active recreation, and maintaining exercise capacity. Skillfully applied physical activity allows to mitigate the effects of pathology and create the compensations to enable the intellectually disabled people to live relatively independently. Physical activity and sport also increase their chances to integrate with their families, peers, and social environment.Materials and methods: The research targeted a group of 134 people with moderate or considerable intellectual disability (65 women and 69 men), aged 20-53 years, who participated in occupational therapy workshops in Jastrzębie Zdrój, Rybnik, and Żory. Physical fitness was assessed using the “Eurofit Special” test and balance tests. Measurements of body height and mass were also taken and then used to calculate the body mass index (BMI).Results: A salient somatic trait was the greater body mass relative to height among the persons with considerable disability, clearly illustrated by the BMI. This explained their greater heaviness in performing physical exercises. An even greater difference between participants with moderate and considerable intellectual disability was visible in physical fitness. Obviously, older persons did not achieve as good results in fitness tests as the younger ones, yet the participants were more differentiated by the level of disability than age. Most symptomatic differences to the disadvantage of the considerably disabled were observed in explosive strength, speed, abdominal muscle strength, and flexibility.Conclusions: Significant differences in fitness between the compared groups make it necessary to take into account the level of intellectual disability in the course of physical education and sport, at work, and in household duties.


Sign in / Sign up

Export Citation Format

Share Document