scholarly journals New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1377
Author(s):  
Oriana Simonetti ◽  
Giulio Rizzetto ◽  
Giulia Radi ◽  
Elisa Molinelli ◽  
Oscar Cirioni ◽  
...  

Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.

2008 ◽  
Vol 30 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Aiguo Shen ◽  
Ji Qian ◽  
Lei Liu ◽  
Haiou Liu ◽  
Jianping Chen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2019 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Roghaye Savari ◽  
Mohammad Shafiei ◽  
Hamid Galehdari ◽  
Mahnaz Kesmati

2014 ◽  
Vol 23 (7) ◽  
pp. 480-485 ◽  
Author(s):  
Hana Jin ◽  
Jihye Seo ◽  
So Young Eun ◽  
Young Nak Joo ◽  
Sang Won Park ◽  
...  

2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Zhen-han Deng ◽  
Jian-jian Yin ◽  
Wei Luo ◽  
Ronak Naveenchandra Kotian ◽  
Shan-shan Gao ◽  
...  

Chronic nonhealing wounds pose a significant challenge to healthcare system because of its tremendous utilization of resources and time to heal. It has a well-deserved reputation for reducing the quality of life for those affected and represent a substantial economic burden to the healthcare system overall. Earthworms are used as a traditional Chinese medicine, and have been applied pharmacologically and clinically since a long time in China. However, there is paucity in data regarding its wound healing effects. Therefore, we investigated the effect of earthworm extract (EE) on skin wound healing process. The obtained data showed that EE has healing effects on local wound of mice. It decreased the wound healing time and reduced the ill-effects of inflammation as determined by macroscopic, histopathologic, hematologic, and immunohistochemistry parameters. The potential mechanism could be accelerated hydroxyproline and transforming growth factor-β secretion—thus increasing the synthesis of collagen, promoting blood capillary, and fibroblast proliferation. It could accelerate the removal of necrotic tissue and foreign bodies by speeding up the generation of interleukin-6, white blood cells, and platelets. It thus enhances immunity, reduces the risk of infection, and promotes wound healing. All in all, the obtained data demonstrated that EE improves quality of healing and could be used as a propitious wound healing agent.


2020 ◽  
pp. 088532822098027
Author(s):  
Tiago Akira Tashiro Araujo ◽  
Matheus Cruz Almeida ◽  
Ingrid Avanzi ◽  
Julia Parisi ◽  
Abdias Fernando Simon Sales ◽  
...  

Membranes or skin dressing are common treatments for skin wound injuries, collagen being one the most effective materials for their manufacturing. Many different sources of collagen with diverse methods of extraction and processing have been used, with evidence of positive effects on the stimulation of skin wound healing. In spite of these factors, there is still limited understanding of the interaction between collagen membranes and biological tissues, especially due to the series of different types of collagen origin. In this context, this study aimed to conduct a systematic review of the available literature examining the effect of various collagen membranes for accelerating skin wound healing in experimental animal models and clinical trials. The present review was performed from March to May of 2020 searching in two databases (PubMed and Scopus). The following Medical Subject Headings (MeSH) descriptors were used: “collagen”, “dressing”, “membranes”, “skin” and “wound”. After the eligibility assessment, 16 studies were included and analyzed. The studies demonstrated that collagen was obtained predominantly from bovine and porcine sources, by acetic acid and/or enzyme dissolution. Additionally, most of the studies demonstrated that the membranes were processed mainly by freeze-drying or lyophilization methods. All the in vivo and clinical trial studies evidenced positive outcomes in the wound healing process, thus confirming that collagen membranes are one of the most efficient treatment for skin wounds, highlighting the enormous potential of this biomaterial to be used for skin tissue engineering purposes.


2020 ◽  
Vol 10 (16) ◽  
pp. 5685
Author(s):  
Barbara Gawronska-Kozak

The forkhead box N1 (Foxn1) transcription factor regulates biological processes of the thymus and skin. Loss-of-function mutations in Foxn1 cause the nude phenotype in humans, mice, and rats, which is characterized by hairless skin and a lack of thymus. This review focuses on the role of Foxn1 in skin biology, including epidermal, dermal, and dermal white adipose tissue (dWAT) skin components. In particular, the role of Foxn1 in the scar-forming skin wound healing process is discussed, underscoring that Foxn1 inactivity in nude mice is permissive for scar-less cutaneous wound resolution.


2008 ◽  
Vol 53 (No. 12) ◽  
pp. 652-659 ◽  
Author(s):  
P. Gal ◽  
Kilik ◽  
R ◽  
M. Mokry ◽  
B. Vidinsky ◽  
...  

The use of a simple and reproducible model is inevitable for objective statement of the effects of external factors on wound healing. Hence, present study was conducted to establish an excisional model of skin wound healing in corticosteroid treated, and streptozotocine induced diabetic rats as well as to standardized the semi-quantitative and quantitative evaluation of selected parameters. Round full thickness skin wounds were performed on the back of male Sprague-Dawley rats. Animals were sacrificed two, six, and fourteen days after surgery. Sections were stained with hematoxylin-eosin and van Gieson. Both semi-quantitative (wound reepithelization; presence of: inflammatory cells, fibroblasts, new wessels, and collagen) and quantitative methods (polymorphonuclear leucocytes/tissue macrophages ratio, percentage of re-epithelization, area of the granulation tissue) were used to evaluate the histological changes during wound healing. As compared to the control group the wound healing process of both experimental groups was decelerated. Interestingly, wound reepithelization and angiogenesis were significantly inhibited only in the steroid rats while epithelization was accelerated in diabetic rats. In conclusion, when compared to primary sutured wound healing it can be concluded that the excisional model is more appropriate for histological assessment of the effect of various factors on wound healing. In addition, administration of corticosteroids represents simple and inexpensive model of a complex skin wound healing impairment.


Sign in / Sign up

Export Citation Format

Share Document