scholarly journals Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 901
Author(s):  
Taewon Han ◽  
Eun Ko ◽  
Minji Kim ◽  
Moonsung Choi ◽  
Changho Lee ◽  
...  

Type 2 diabetes mellitus is characterized by insulin resistance and pancreatic beta (β)-cell dysfunction. Accumulating evidence suggests that mitochondrial dysfunction may cause insulin resistance in peripheral tissues. As commercial hypoglycemic drugs have side effects, it is necessary to develop safe and effective natural compound-based hypoglycemic treatments. This study aimed to investigate the hypoglycemic effects of Mori Ramulus ethanol extract (ME) in a high-fat diet (HFD)-induced diabetes mouse model to decipher the underlying mechanisms focusing on apoptosis and mitochondrial function. ME significantly decreased tunicamycin-induced apoptotic cell death and increased insulin secretion following glucose stimulation in NIT-1 pancreatic β-cells. Tunicamycin-exposed NIT-1 pancreatic β-cells showed elevated reactive oxygen species levels and reduced mitochondrial membrane potential, which were reversed by ME treatment. ME inhibited the tunicamycin-induced apoptosis cascade in tunicamycin-exposed NIT-1 pancreatic β-cells. In HFD diabetic mice, the serum-free fatty acid and insulin levels decreased following a 15-week ME administration. Glucose and insulin tolerance tests showed that ME improved insulin sensitivity. Moreover, ME ameliorated pancreatic β-cell mass loss in diabetic mice. Finally, ME-treated HFD-fed mice showed improved hepatic mitochondrial function resulting in insulin sensitivity in target tissues. Thus, ME provides protection against pancreatic β-cell apoptosis and prevents insulin resistance by improving mitochondrial function.

Endocrinology ◽  
2010 ◽  
Vol 151 (9) ◽  
pp. 4178-4186 ◽  
Author(s):  
Sarah L. Gray ◽  
Christine Donald ◽  
Arif Jetha ◽  
Scott D. Covey ◽  
Timothy J. Kieffer

The adipocyte hormone leptin acts centrally and peripherally to regulate body weight and glucose homeostasis. The pancreatic β-cell has been shown to be a key peripheral target of leptin, with leptin suppressing insulin synthesis and secretion from β-cells both in vitro and in vivo. Mice with disrupted leptin signaling in β-cells (leprflox/flox RIPcre tg+ mice) display hyperinsulinemia, insulin resistance, glucose intolerance, obesity, and reduced fasting blood glucose. We hypothesized that hyperinsulinemia precedes the development of insulin resistance and increased adiposity in these mice with a defective adipoinsular axis. To determine the primary defect after impaired β-cell leptin signaling, we treated leprflox/flox RIPcre tg+ mice with the insulin sensitizer metformin or the insulin-lowering agent diazoxide with the rationale that pharmacological improvement of the primary defect would alleviate the secondary symptoms. We show that improving insulin sensitivity with metformin does not normalize hyperinsulinemia, whereas lowering insulin levels with diazoxide improves insulin sensitivity. Taken together, these results suggest that hyperinsulinemia precedes insulin resistance in β-cell leptin receptor-deficient mice, with insulin resistance developing as a secondary consequence of excessive insulin secretion. Therefore, pancreatic β-cell leptin receptor-deficient mice may represent a model of obesity-associated insulin resistance that is initiated by hyperinsulinemia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ionel Sandovici ◽  
Constanze M. Hammerle ◽  
Sam Virtue ◽  
Yurena Vivas-Garcia ◽  
Adriana Izquierdo-Lahuerta ◽  
...  

AbstractWhen exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.


2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


2020 ◽  
Vol 25 (2) ◽  
pp. 23
Author(s):  
Diana Gamboa ◽  
Carlos E. Vázquez ◽  
Paul J. Campos

Type-1 diabetes mellitus (T1DM) is an autoimmune disease that has an impact on mortality due to the destruction of insulin-producing pancreatic β -cells in the islets of Langerhans. Over the past few years, the interest in analyzing this type of disease, either in a biological or mathematical sense, has relied on the search for a treatment that guarantees full control of glucose levels. Mathematical models inspired by natural phenomena, are proposed under the prey–predator scheme. T1DM fits in this scheme due to the complicated relationship between pancreatic β -cell population growth and leukocyte population growth via the immune response. In this scenario, β -cells represent the prey, and leukocytes the predator. This paper studies the global dynamics of T1DM reported by Magombedze et al. in 2010. This model describes the interaction of resting macrophages, activated macrophages, antigen cells, autolytic T-cells, and β -cells. Therefore, the localization of compact invariant sets is applied to provide a bounded positive invariant domain in which one can ensure that once the dynamics of the T1DM enter into this domain, they will remain bounded with a maximum and minimum value. Furthermore, we analyzed this model in a closed-loop scenario based on nonlinear control theory, and proposed bases for possible control inputs, complementing the model with them. These entries are based on the existing relationship between cell–cell interaction and the role that they play in the unchaining of a diabetic condition. The closed-loop analysis aims to give a deeper understanding of the impact of autolytic T-cells and the nature of the β -cell population interaction with the innate immune system response. This analysis strengthens the proposal, providing a system free of this illness—that is, a condition wherein the pancreatic β -cell population holds and there are no antigen cells labeled by the activated macrophages.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michele Mishto ◽  
Artem Mansurkhodzhaev ◽  
Teresa Rodriguez-Calvo ◽  
Juliane Liepe

Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens’ mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.


Sign in / Sign up

Export Citation Format

Share Document