scholarly journals Potential Activity Mechanisms of Aesculus hippocastanum Bark: Antioxidant Effects in Chemical and Biological In Vitro Models

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 995
Author(s):  
Aleksandra Owczarek ◽  
Joanna Kolodziejczyk-Czepas ◽  
Joanna Woźniak-Serwata ◽  
Anna Magiera ◽  
Natalia Kobiela ◽  
...  

The bark of Aesculus hippocastanum is an herbal remedy used in conditions connected with vascular insufficiency; however, there is a lack of data concerning its mechanisms of action. The present work is a preliminary investigation into some of the potential directions of the bark activity. The phytochemically (qualitative UHPLC-PDA-MS/MS and quantitative UHPLC-PDA assays) characterized extract and its four main constituents (esculin, fraxin, (‒)-epicatechin and procyanidin A2) were first evaluated in terms of their antioxidant capacity. All analytes demonstrated dose-dependent scavenging potential towards the most common in vivo oxidants, with particularly advantageous capacity of the extract and its flavan-3-ol constituents against peroxynitrite (3.37–13.26 mmol AA/g), hydroxyl radical (5.03–8.91 mmol AA/g) and superoxide radical (3.50–5.50 mmol AA/g). Moreover, even at low concentrations (1–5 µg/mL), they protected components of human plasma against oxidative damage inflicted by peroxynitrite, preventing oxidation of plasma protein thiols and diminishing the tyrosine nitration and lipid peroxidation. High efficiency of the analytes was also demonstrated in preventing the peroxynitrite-induced nitrative changes of fibrinogen (up to 80% inhibition for (−)-epicatechin at 50 µg/mL), an important protein of coagulation cascade. Additionally, the extract and its constituents had, at most, moderate inhibitory activity towards platelet aggregation induced by ADP and only negligible influence on clotting times. The results show that, among the investigated properties, the antioxidant activity might, to the highest extent, be responsible for the bark efficacy in vascular disorders, thus supporting its application in those conditions; they also indicate the directions for future research that would allow for better understanding of the bark activity.

2020 ◽  
Vol 21 (13) ◽  
pp. 996-1008
Author(s):  
Mengli Wang ◽  
Qiuzheng Du ◽  
Lihua Zuo ◽  
Peng Xue ◽  
Chao Lan ◽  
...  

Background: As a new tumor therapy, targeted therapy is becoming a hot topic due to its high efficiency and low toxicity. Drug effects of targeted tumor drugs are closely related to pharmacokinetics, so it is important to understand their distribution and metabolism in vivo. Methods: A systematic review of the literature on the metabolism and distribution of targeted drugs over the past 20 years was conducted, and the pharmacokinetic parameters of approved targeted drugs were summarized in combination with the FDA's drug instructions. Targeting drugs are divided into two categories: small molecule inhibitors and monoclonal antibodies. Novel targeting drugs and their mechanisms of action, which have been developed in recent years, are summarized. The distribution and metabolic processes of each drug in the human body are reviewed. Results: In this review, we found that the distribution and metabolism of small molecule kinase inhibitors (TKI) and monoclonal antibodies (mAb) showed different characteristics based on the differences of action mechanism and molecular characteristics. TKI absorbed rapidly (Tmax ≈ 1-4 h) and distributed in large amounts (Vd > 100 L). It was mainly oxidized and reduced by cytochrome P450 CYP3A4. However, due to the large molecular diameter, mAb was distributed to tissues slowly, and the volume of distribution was usually very low (Vd < 10 L). It was mainly hydrolyzed and metabolized into peptides and amino acids by protease hydrolysis. In addition, some of the latest drugs are still in clinical trials, and the in vivo process still needs further study. Conclusion: According to the summary of the research progress of the existing targeting drugs, it is found that they have high specificity, but there are still deficiencies in drug resistance and safety. Therefore, the development of safer and more effective targeted drugs is the future research direction. Meanwhile, this study also provides a theoretical basis for clinical accurate drug delivery.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jie Zheng ◽  
Na Tian ◽  
Fei Liu ◽  
Yidian Zhang ◽  
Jingfen Su ◽  
...  

AbstractIntraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders, collectively termed as tauopathies, including the most common Alzheimer’s disease (AD). Therefore, selectively removing or reducing hyperphosphorylated tau is promising for therapies of AD and other tauopathies. Here, we designed and synthesized a novel DEPhosphorylation TArgeting Chimera (DEPTAC) to specifically facilitate the binding of tau to Bα-subunit-containing protein phosphatase 2A (PP2A-Bα), the most active tau phosphatase in the brain. The DEPTAC exhibited high efficiency in dephosphorylating tau at multiple AD-associated sites and preventing tau accumulation both in vitro and in vivo. Further studies revealed that DEPTAC significantly improved microtubule assembly, neurite plasticity, and hippocampus-dependent learning and memory in transgenic mice with inducible overexpression of truncated and neurotoxic human tau N368. Our data provide a strategy for selective removal of the hyperphosphorylated tau, which sheds new light for the targeted therapy of AD and related-tauopathies.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


1991 ◽  
Vol 75 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Atsushi Teramura ◽  
Robert Macfarlane ◽  
Christopher J. Owen ◽  
Ralph de la Torre ◽  
Kenton W. Gregory ◽  
...  

✓ Laser energy of 480 nm was applied in 1-µsec pulses varying between 2.2 and 10 mJ to in vitro and in vivo models of cerebral vasospasm. First, the pulsed-dye laser was applied intravascularly via a 320-µm fiber to basilar artery segments from six dogs. The segments were mounted in a vessel-perfusion apparatus and constricted to, on average, 70% of resting diameter by superfusion with dog hemolysate. Immediate increase in basilar artery diameter occurred to a mean of 83% of control. In a second model, the basilar artery was exposed transclivally in the rabbit. In three normal animals, superfusion of the artery with rabbit hemolysate resulted in a reduction of mean vessel diameter to 81% of control. Following extravascular application of the laser, vessels returned to an average of 106% of the resting state. In six rabbits, the basilar artery was constricted by two intracisternal injections of autologous blood, 3 days apart. Two to 4 days after the second injection, the basilar artery was exposed. Extravascular laser treatment from a quartz fiber placed perpendicular to the vessel adventitia resulted in an immediate 53% average increase in caliber to an estimated 107% of control. No reconstriction was observed over a period of up to 5 hours. Morphologically, damage to the arterial wall was slight. This preliminary investigation suggests that the 1-µsec pulsed-dye laser may be of benefit in the treatment of cerebral vasospasm.


2014 ◽  
Vol 2014 ◽  
pp. 1-32 ◽  
Author(s):  
Shamkant B. Badgujar ◽  
Vainav V. Patel ◽  
Atmaram H. Bandivdekar

Foeniculum vulgareMill commonly called fennel has been used in traditional medicine for a wide range of ailments related to digestive, endocrine, reproductive, and respiratory systems. Additionally, it is also used as a galactagogue agent for lactating mothers. The review aims to gather the fragmented information available in the literature regarding morphology, ethnomedicinal applications, phytochemistry, pharmacology, and toxicology ofFoeniculum vulgare. It also compiles available scientific evidence for the ethnobotanical claims and to identify gaps required to be filled by future research. Findings based on their traditional uses and scientific evaluation indicates thatFoeniculum vulgareremains to be the most widely used herbal plant. It has been used for more than forty types of disorders. Phytochemical studies have shown the presence of numerous valuable compounds, such as volatile compounds, flavonoids, phenolic compounds, fatty acids, and amino acids. Compiled data indicate their efficacy in severalin vitroandin vivopharmacological properties such as antimicrobial, antiviral, anti-inflammatory, antimutagenic, antinociceptive, antipyretic, antispasmodic, antithrombotic, apoptotic, cardiovascular, chemomodulatory, antitumor, hepatoprotective, hypoglycemic, hypolipidemic, and memory enhancing property.Foeniculum vulgarehas emerged as a good source of traditional medicine and it provides a noteworthy basis in pharmaceutical biology for the development/formulation of new drugs and future clinical uses.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Patrizia Camelliti ◽  
Gil Bub ◽  
Daniel J Stuckey ◽  
Christian Bollensdorff ◽  
Damian J Tyler ◽  
...  

Sarcomere length (SL) is a fundamental parameter underlying the Frank Starling relation in the heart, as it offers an absolute representation of myocardial stretch. Previous studies addressed the Frank Starling relation by measuring SL in isolated myocytes or muscle strips. Here, we report first data obtained using a novel technique to measure sub-epicardial SL in perfused hearts. Rat hearts were Langendorff perfused (normal Tyrode solution) at a constant pressure of 90mmHg, labeled with the fluorescent membrane marker di-4-ANEPPS, and then arrested with high-K + Tyrode for either 2-photon microscopy (n=4) or MRI (n=4). Image analysis software was developed to extract SL at the cell level from >1,400 2-photon images (Fig 1 ) and correct for cell angle. SL increased by 10±2 % between 30 and 80 min of perfusion (1.98±0.04 to 2.17±0.03 μm; p<0.05; Fig 1 ). Measurements of left ventricular myocardial volume (LVMV) were made in vivo and in perfused hearts using 3D MRI. LVMV increased by 24±7% from in vivo to 30 min of perfusion, and by 11±3 % between 30 and 90 min (539±35; 664±44; 737±49 mm 3 , respectively; p<0.05; Fig 1 ). We show that SL can be measured in isolated perfused hearts. The method allowed monitoring of changes in SL over time, and showed that SL and LVMV increase to a similar extent during 30–80 min perfusion with crystalloid solution, probably due to tissue oedema. This result, together with the increase in LVMV during the first 30 min, highlights the pronounced differences between in vivo , in situ , and in vitro model systems for studies of cardiac physiology and mechanics. Future research will compare changes in SL in healthy hearts and disease models involving contractile dysfunction. Figure 1: Left: 2-photon microscopy image of di-4-ANEPPS labeled myocardium. Right: SL and LVMV changes over time.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0053
Author(s):  
Jianying Zhang ◽  
Daibang Nie ◽  
Guangyi Zhao ◽  
Susheng Tan ◽  
MaCalus Hogan ◽  
...  

Category: Hindfoot Introduction/Purpose: Entheses have a special fibrocartilage transition zone where tendons and ligaments attach to bone. Enthesis injury is very common, and the reattachment of tendon to bone is a great challenge because healing takes place between a soft tissue (tendon) and a hard tissue (bone). We have now developed a kartogene (KGN)-containing polymer scaffold (KGN-P) that can precisely deliver KGN to damaged enthesis area. The effects of the KGN-containing polymer on the healing of wounded TBJ were investigated in vitro and in vivo. Methods: The proliferation and chondrogenesis of rat Achilles tendon stem cells (TSCs) grown in four conditions were measured: normal medium (Control); normal medium with 100 nM KGN (KGN); lysine diisocyanate (LDI)-glycerol scaffold with normal medium (LDI-P); LDI-glycerol-KGN scaffold with normal medium (KGN-P).A wound (1 mm) was created on each hind leg Achilles enthesis of all 8 rats (3 months old). The wounds were then treated either with 10 ul saline (Wound); or 10 ul of 10 uM KGN (KGN); or LDI polymer scaffold (LDI-P); or KGN-containing polymer scaffold (KGN-P). The rats were sacrificed on day 15 and 30 post-surgery, and their Achilles entheses were collected for gross inspection and histochemical analysis. Results: KGN-containing polymers have sponge-like structures (Fig. 1A-D), and release KGN in a time- and temperature-dependent manner (Fig. 1E). KGN-P scaffold induced chondrogenesis of TSCs (Fig. 2D, 2H) without changing cell proliferation (Fig. 2I), and enhanced fibrocartilage-like tissue formation (Fig. 3E). KGN (Fig. 3C) and LDI-P (Fig. 3D) treated groups exhibited unhealed wound areas as in saline group (Fig. 3B). Finally, KGN-P and KGN treated rat TSCs underwent chondrogenesis by upregulating collagen II, aggrecan, and SOX-9 expression (Fig. 3F). Conclusion: Our results showed that KGN-containing polymer scaffold enhanced wounded enthesis healing by inducing TSC chondrogenesis and promoting the formation of the fibrocartilage in the wound site. The KGN-P may be used for regeneration of wounded entheses in clinical settings. Future research will focus on optimizing KGN concentration and releasing rate in the polymer scaffold during enthesis healing.


2000 ◽  
Vol 20 (21) ◽  
pp. 8059-8068 ◽  
Author(s):  
Chonghui Cheng ◽  
Stewart Shuman

ABSTRACT Topoisomerase IB catalyzes recombinogenic DNA strand transfer reactions in vitro and in vivo. Here we characterize a new pathway of topoisomerase-mediated DNA ligation in vitro (flap ligation) in which vaccinia virus topoisomerase bound to a blunt-end DNA joins the covalently held strand to a 5′ resected end of a duplex DNA containing a 3′ tail. The joining reaction occurs with high efficiency when the sequence of the 3′ tail is complementary to that of the scissile strand immediately 5′ of the cleavage site. A 6-nucleotide segment of complementarity suffices for efficient flap ligation. Invasion of the flap into the duplex apparently occurs while topoisomerase remains bound to DNA, thereby implying a conformational flexibility of the topoisomerase clamp around the DNA target site. The 3′ flap acceptor DNA mimics a processed end in the double-strand-break-repair recombination pathway. Our findings suggest that topoisomerase-induced breaks may be rectified by flap ligation, with ensuing genomic deletions or translocations.


Sign in / Sign up

Export Citation Format

Share Document