scholarly journals Quantitative Analysis of Bioactive Phenanthrenes in Dioscorea batatas Decne Peel, a Discarded Biomass from Postharvest Processing

Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 541 ◽  
Author(s):  
Minyoul Kim ◽  
Myeong Ju Gu ◽  
Joon-Goo Lee ◽  
Jungwook Chin ◽  
Jong-Sup Bae ◽  
...  

Dioscorea batatas Decne (Chinese yam) has been widely cultivated in East Asia for the purposes of food and medicinal uses for centuries. Along with its high nutritional value, the medicinal value of D. batatas has been extensively investigated in association with phytochemicals such as allantoin, flavonoids, saponins and phenanthrenes. Phenanthrenes are especially considered the standard marker chemicals of the Chinese yam for their potent bioactivity and availability of analysis with conventional high performance liquid chromatography with ultraviolet detection (HPLC-UV) methods. In order to investigate how much the contents of phenanthrenes are in the actual food products provided for consumers, D. batatas tuber was peeled and separated into its peel and flesh as in the conventional processing method. A quantitative analysis using the HPLC-UV method revealed that phenanthrenes are concentrically present in the D. batatas peel, while phenanthrenes are present in the flesh under the limit of detection. The difference in the contents of phenanthrenes is estimated to have arisen the considerable difference of antioxidant potential between the peel and the flesh. The results from this study suggest the high value of the discarded biomass of the Chinese yam peel and the necessity for the utilization of the Chinese yam peel.

Author(s):  
MADHURIMA BASAK ◽  
Santhosh Reddy Gouru ◽  
Animesh Bera ◽  
Krishna veni Nagappan

Objective: The present study aims at developing an accurate precise, rapid and sensitive Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) method for assessing Empagliflozin in bulk drug and in the pharmaceutical dosage form. Methods: The proposed method employs a Reverse Phase Shim Pack C18 column (250 mm × 4.6 mm id; 5 µm) using a mobile phase comprising of acetonitrile and water in the ratio of 60:40 v/v flushed at a flow rate of 1 ml/min. The eluents were monitored at 223 nm. Results: Empagliflozin was eluted at a retention time of 5.417 min and established a co-relation co-efficient (R2>0.999) over a concentration ranging from 0.0495-100µg/ml. Percentage recovery was obtained between 98-102% which indicated that the method is accurate. The Limit of Detection (LOD) and Limit of Quantitation (LOQ) were found at 0.0125µg/ml and 0.0495µg/ml, respectively. Conclusion: An RP-HPLC method which was relatively simple, accurate, rapid and precise was developed and its validation was performed for the quantitative analysis of empagliflozin in bulk and tablet dosage form (10 and 25 mg) in accordance to International Conference of Harmonization (ICH) Q2 (R1) guidelines. The proposed method may aid in routinely analyzing empagliflozin in pharmaceuticals.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3917
Author(s):  
Jong-Dae Kim ◽  
Chan-Young Park ◽  
Yu-Seop Kim ◽  
Ji-Soo Hwang

Most existing commercial real-time polymerase chain reaction (RT-PCR) instruments are bulky because they contain expensive fluorescent detection sensors or complex optical structures. In this paper, we propose an RT-PCR system using a camera module for smartphones that is an ultra small, high-performance and low-cost sensor for fluorescence detection. The proposed system provides stable DNA amplification. A quantitative analysis of fluorescence intensity changes shows the camera’s performance compared with that of commercial instruments. Changes in the performance between the experiments and the sets were also observed based on the threshold cycle values in a commercial RT-PCR system. The overall difference in the measured threshold cycles between the commercial system and the proposed camera was only 0.76 cycles, verifying the performance of the proposed system. The set calibration even reduced the difference to 0.41 cycles, which was less than the experimental variation in the commercial system, and there was no difference in performance.


2021 ◽  
Author(s):  
Feng Gao ◽  
Xiaolong Tu ◽  
Yongfang Yu ◽  
Yansha Gao ◽  
Jin Zou ◽  
...  

Abstract Herein, an efficient electrochemical sensing platform is proposed for selective and sensitive detection of nitrite on the basis of Cu@C@Zeolitic imidazolate framework-8 (Cu@C@ZIF-8) heterostructure. Core-shell Cu@C@ZIF-8 composite was synthesized by pyrolysis of Cu-metal-organic framework@ZIF-8 (Cu-MOF@ZIF-8) in Ar atmosphere on account of the difference of thermal stability between Cu-MOF and ZIF-8. For the sensing system of Cu@C@ZIF-8, ZIF-8 with proper pore size allows nitrite diffuse through the shell, while big molecules cannot, which ensures high selectivity of the sensor. On the other hand, Cu@C as electrocatalyst promotes the oxidation of nitrite, thereby resulting high sensitivity of the sensor. Accordingly, the Cu@C@ZIF-8 based sensor presents excellent performance for nitrite detection, which achieves a wide linear response range of 0.1 µM to 300.0 µM, and a low limit of detection (LOD) of 0.033 µM. In addition, the Cu@C@ZIF-8 sensor possesses excellent stability and reproducibility, and was employed to quantify nitrite in sausage samples with recoveries of 95.45-104.80%.


2016 ◽  
Vol 4 ◽  
pp. 205031211666624 ◽  
Author(s):  
Elham Bazmi ◽  
Behnam Behnoush ◽  
Maryam Akhgari ◽  
Leila Bahmanabadi

Objective: Benzodiazepines are frequently screened drugs in emergency toxicology, drugs of abuse testing, and in forensic cases. As the variations of benzodiazepines concentrations in biological samples during bleeding, postmortem changes, and redistribution could be biasing forensic medicine examinations, hence selecting a suitable sample and a validated accurate method is essential for the quantitative analysis of these main drug categories. The aim of this study was to develop a valid method for the determination of four benzodiazepines (flurazepam, lorazepam, alprazolam, and diazepam) in vitreous humor using liquid–liquid extraction and high-performance liquid chromatography. Methods: Sample preparation was carried out using liquid–liquid extraction with n-hexane: ethyl acetate and subsequent detection by high-performance liquid chromatography method coupled to diode array detector. This method was applied to quantify benzodiazepines in 21 authentic vitreous humor samples. Linear curve for each drug was obtained within the range of 30–3000 ng/mL with coefficient of correlation higher than 0.99. Results: The limit of detection and quantitation were 30 and 100 ng/mL respectively for four drugs. The method showed an appropriate intra- and inter-day precision (coefficient of variation < 10%). Benzodiazepines recoveries were estimated to be over 80%. The method showed high selectivity; no additional peak due to interfering substances in samples was observed. Conclusion: The present method was selective, sensitive, accurate, and precise for the quantitative analysis of benzodiazepines in vitreous humor samples in forensic toxicology laboratory.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701
Author(s):  
Bojidarka Ivanova ◽  
Michael Spiteller

This paper reports the qualitative and quantitative analysis (QA) of mixtures of hallucinogens, N,N-dimethyltryptamine (DMT) (1), 5-methoxy- (1a) and 5-hydroxy- N,N-dimethyltryptamine (1b) in the presence of β-carbolines (indole alkaloids of type XII) {(2), (3) and (5)}. The validated electronic absorption spectroscopic (EAs) protocol achieved a concentration limit of detection (LOD) of 7.2.10-7 mol/L {concentration limit of quantification (LOQ) of 24.10-7mol/L} using bands (λmax) within 260±0.23-262±0.33 nm. Metrology, including accuracy, measurement repeatability, measurement precision, trueness of measurement,and reproducibility of the measurements are presented using N,N- dimethyltryptamine (DMA) as standard. The analytical quantities of mixtures of alkaloids 4, 6 and 7 are: λmax 317±0.45, 338±0.69 and 430±0.09 for 4 (LOD, 8.6.10-7 mol/L; LOQ, 28.666, mol/L), as well as 528±0.75 nm for 6 and 7 (LOD, 8.2. 10-7 mol/L; LOQ, 27.333, mol/L), respectively. The partially validated protocols by high performance liquid chromatography (HPLC), electrospray ionization (ESI), mass spectrometry (MS), both in single and tandem operation (MS/MS) mode, as well as matrix/assisted laser desorption/ionization (MALDI) MS are elaborated. The Raman spectroscopic (RS) protocol for analysis of psychoactive substances, characterized by strong fluorescence RS profile was developed, with the detection limits being discussed. The known synergistic effect leading to increase the psychoactive and hallucinogenic properties and the reported acute poisoning cases from 1-7, make the present study emergent, since as well the current lack of analytical data and the herein metrology obtained contributed to the elaboration of highly selective and precise analytical protocols, which would be of interest in the field of criminal forensic analysis.


2008 ◽  
Vol 91 (5) ◽  
pp. 1007-1012 ◽  
Author(s):  
Peng Wang ◽  
Donghui Liu ◽  
Xu Gu ◽  
Shuren Jiang ◽  
Zhiqiang Zhou

Abstract Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094625
Author(s):  
Jiangxia Hu ◽  
Jiayu Gao

Two cultivated varieties of Gleditsia sinensis Lam, Shuo Spina Gleditsiae (SSG) and Mi Spina Gleditsiae (MSG), are currently used in China as a mixture of the herb Spina Gleditsia. This work evaluates, for the first time, the difference in cytotoxicity, antioxidant activity, and flavonoid contents between SSG and MSG. Quantification of bioactive flavonoids in the samples was performed using high-performance liquid chromatography. Total antioxidant activity and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid free radical scavenging assays were used, and the growth inhibitory effects on cancer cells were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Epicatechin, isovitexin, fisetin, fustin, quercetin, and aromadendrin were qualified and quantified; much higher amounts were found in the extract of SSG than that of MSG. In antioxidant assays, SSG extracts presented stronger effects than those of MSG. The half-maximal inhibitory concentration values of SSG were 46.2 and 47.8 μg/mL, compared with 70.5 and 73.0 μg/mL for MSG against EC109 and HepG2 cancer cells, respectively. It thus brings concern about potential quality issues regarding efficacy, safety for healthy food production, and potential medicinal uses.


Author(s):  
Savita Jandaik ◽  
Sharma Anjana

Abstract : Oyster mushroom is consumed all over the world due to its taste, flavor, high nutritional value and some medicinal properties. Many species of this genus are rich in proteins with essential amino acids, polysaccharides, essential amino acids, dietary fibers , important minerals and some vitamins. Because of these nutritional composition and presence of bioactive molecules oyster mushroom have been reported to have anticancer,antihypertensive,antihypercholestromic, anti diabetic, antiobesity antiaging ,antimicrobial and antioxidant activities The high nutritional value and potent medicinal uses suggests that Pleurotus mushrooms are important functional foods or nutraceuticalsKey words: Oyster mushroom, Pleurotus species, medicinal value, human ailments, antimicrobial activities


Sign in / Sign up

Export Citation Format

Share Document