scholarly journals Sustainable Organic Dyes from Winemaking Lees for Photoelectrochemical Dye-Sensitized Solar Cells

2020 ◽  
Vol 10 (6) ◽  
pp. 2149
Author(s):  
Manuel Meneghetti ◽  
Aldo Talon ◽  
Elti Cattaruzza ◽  
Emilio Celotti ◽  
Elisabetta Bellantuono ◽  
...  

During the last two decades, Dye Sensitized Solar Cells (DSSCs) have received a great deal of attention as a promising, low-cost alternative to conventional silicon photovoltaic devices. Natural dye molecules can be used as a sensitizer for their low cost, good light absorbance, easy preparation process, and biodegradability. In this study, dyes were obtained from wine lees, the last by-product of winemaking process, supplied by a venetian winery (Italy). Polyphenols, like tannins and anthocyanins, which were extracted from winemaking lees, were adsorbed on a nanostructured ordered mesoporous titanium dioxide, previously treated at different temperatures (400–600 °C). Both dyes and titania semiconductor samples were studied with different techniques. The tests were carried out on prototypes to evaluate the cell power and the photocurrent generated under simulated solar light irradiation. The obtained solar energy conversion efficiencies are comparable to those that were reported in literature by using organic dyes extracted from vegetables, fruits, and plants. It is significant that these dyes are largely available and cost effective, since recovered from a waste otherwise to be disposed of, opening up a perspective of feasibility for inexpensive and environmentally friendly dye solar cells to generate green electricity and transforming agri-food waste into a resource.

2018 ◽  
Vol 36 (4) ◽  
pp. 655-661 ◽  
Author(s):  
Sarita Bose ◽  
K.R. Genwa

AbstractDye sensitized solar cells are photoelectrochemical cells mimicking photosynthesis. They represent a new generation of solar cells which is intensively studied nowadays. This cell was fabricated using TiO2 nanoparticles coated on FTO glass, organic dyes as photosensitizer, PEDOT:PSS as counter electrode and iodide-triiodide as electrolyte. The present work aims at the use of low cost new organic dyes viz. biebrich scarlet, alizarine cyanine green and evans blue for DSSC as an alternative to metallic dyes. In the present work, I-V characteristics, energy or power conversion efficiencies of the dyes have been studied in different solvents. The photoelectrochemical properties of the dyes were observed under 1.5 AM condition.


2012 ◽  
Vol 65 (9) ◽  
pp. 1203 ◽  
Author(s):  
Qianqian Li ◽  
Zhongxing Jiang ◽  
Jingui Qin ◽  
Zhen Li

Due to their high conversion efficiency and low cost of production, dye-sensitized solar cells based on organic dyes have attracted considerable attention. By utilizing various heterocycles as construction blocks for organic dyes, the performance of solar cells was optimized to exhibit good light-harvesting features and suppress interfacial recombinations. The aim of this review is to highlight recent progress in the molecular design of heterocyclic-functionalized organic dyes for efficient dye-sensitized solar cells, and special attention has been paid to the relationship between chemical structure and the photovoltaic performance of dye-sensitized solar cells based on these dyes.


2018 ◽  
Vol 6 (44) ◽  
pp. 22256-22265 ◽  
Author(s):  
Jinfeng Wang ◽  
Siwei Liu ◽  
Zhaofei Chai ◽  
Kai Chang ◽  
Manman Fang ◽  
...  

The conversion efficiencies of dye sensitized solar cells were largely enhanced by the optimization of intramolecular and interfacial charge transfer.


2019 ◽  
Vol 48 (6) ◽  
pp. 481-486 ◽  
Author(s):  
Mozhgan Hosseinnezhad ◽  
Hanieh Shaki

Purpose The purpose of this paper is to study the substituent effect in dye-sensitized solar cells’ (DSSCs) performance. For this end, three new metal organic dyes with DPA structure were synthesized. For investigation of the substituent effect, two different anchoring groups, namely, 1,3-dioxo-1Hbenz[de]isoquinolin-2(3H)-yl)benzenesulfonamides and 1,8-naphthalimide, were used. Design/methodology/approach Three organic dyes based on azo were selected, which contain various electron donor groups. Absorption properties of purified dyes were studied in solution and on photoelectrode (TiO2 and ZnO) substrate. DSSCs were prepared to determine the photovoltaic performance of each photosensitizer. Findings The results showed that all organic dyes form J-aggregation on the photoanode substrate. Cyclic voltammetry results for all organic dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of photo-electric conversion. The results illustrate conversion efficiencies of cells based on solution Dyes 1, 2 and 3 and TiO2 as 3.44, 4.71 and 4.82 per cent, respectively. The conversion efficiencies of cells based on solution Dye 1, 2 and 3 and ZnO are 3.21, 4.09 and 4.14 per cent, respectively. Practical implications In this study, the development of effect of assembling materials, offering improved photovoltaic properties. Social implications Organic dye attracts more and more attention because of its low-cost, facile route synthesis and less-hazardous properties. Originality/value To the best of the authors’ knowledge, the effect of anchoring agent and nanostructure on DSSCs performance was investigated for the first time.


2020 ◽  
Vol 8 (7) ◽  
pp. 2388-2399 ◽  
Author(s):  
Panpan Heng ◽  
Lemin Mao ◽  
Xugeng Guo ◽  
Li Wang ◽  
Jinglai Zhang

Studies demonstrate that our designed dyes 3 and 4 exhibit broad optical absorption in the 550–650 nm region and high photoelectric conversion efficiencies of over 32%.


2014 ◽  
Vol 2 (13) ◽  
pp. 4676-4681 ◽  
Author(s):  
Hongxia Xu ◽  
Chuanjian Zhang ◽  
Zaiwei Wang ◽  
Shuping Pang ◽  
Xinhong Zhou ◽  
...  

The hierarchical nanocomposites (Fe3C@N–C) of iron carbide encaged in nitrogen-doped carbon counter electrode were fabricated for low-cost, highly efficient dye-sensitized solar cells.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5529
Author(s):  
Agata Zdyb ◽  
Ewelina Krawczak

Dye-sensitized solar cells (DSSCs) were fabricated using a photoelectrode covered by a porous layer of titanium dioxide, platinum counter electrode, iodide/triiodide electrolyte and three different dyes: phenylfluorone (PF), pyrocatechol violet (PCV) and alizarin (AL). After the adsorption of the dyes on the mesoporous TiO2 layer, the measurement of absorption spectra of all the tested dyes revealed a significant broadening of the absorption range. The positions of highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) levels of dye molecules were determined, indicating that all three dyes are good candidates for light harvesters in DSSCs. The cells were tested under simulated solar light, and their working parameters were determined. The results showed that the implementation of the back reflector layer made of BaSO4 provided an improvement in the cell efficiency of up to 17.9% for phenylfluorone, 60% for pyrocatechol violet and 21.4% for alizarin dye.


Sign in / Sign up

Export Citation Format

Share Document