Generalized Single Stage Class C Amplifier: Analysis from the Viewpoint of Chaotic Behavior
This paper briefly describes a recent discovery that occurred during the study of the simplest mathematical model of a class C amplifier with a bipolar transistor. It is proved both numerically and experimentally that chaos can be observed in this simple network structure under three conditions: (1) the transistor is considered non-unilateral, (2) bias point provides cubic polynomial feedforward and feedback transconductance, and (3) the LC tank has very high resonant frequency. Moreover, chaos is generated by an autonomous class C amplifier; i.e., an isolated system without a driving force is analyzed. By the connection of a harmonic input signal, much more complex behavior can be observed. Additionally, due to the high degree of generalization of the amplifier cell, similar fundamental circuits can be ordinarily found as subparts of typical building blocks of a radio frequency signal path.