scholarly journals Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries

2020 ◽  
Vol 10 (24) ◽  
pp. 8988
Author(s):  
Juho Välikangas ◽  
Petteri Laine ◽  
Marianna Hietaniemi ◽  
Tao Hu ◽  
Pekka Tynjälä ◽  
...  

This article presents the electrochemical results that can be achieved for pure LiNiO2 cathode material prepared with a simple, low-cost, and efficient process. The results clarify the roles of the process parameters, precipitation temperature, and lithiation temperature in the performance of high-quality LiNiO2 cathode material. Ni(OH)2 with a spherical morphology was precipitated at different temperatures and mixed with LiOH to synthesize the LiNiO2 cathode material. The LiNiO2 calcination temperature was optimized to achieve a high initial discharge capacity of 231.7 mAh/g (0.1 C/2.6 V) with a first cycle efficiency of 91.3% and retaining a capacity of 135 mAh/g after 400 cycles. These are among the best results reported so far for pure LiNiO2 cathode material.

2021 ◽  
Vol 50 (15) ◽  
pp. 5115-5119
Author(s):  
Yongqing Yuan ◽  
Shijie Liang ◽  
Weipei Liu ◽  
Qiong Zhao ◽  
Puguang Peng ◽  
...  

We successfully synthesized Al-Fe2O3 anode with high initial discharge capacity of 1210 mAh g−1 under 0.5 A g−1 and maintained around 900 mAh g−1 during the cycles. The doping of Al assists in the stability and electrochemical behavior of the whole electrode.


Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

2021 ◽  
pp. 103512
Author(s):  
Zaowen Zhao ◽  
Bao Zhang ◽  
Jingtian Zou ◽  
Pengfei Li ◽  
Zihang Liu ◽  
...  

2017 ◽  
Vol 4 (11) ◽  
pp. 1806-1812 ◽  
Author(s):  
Shibing Zheng ◽  
Jinyan Hu ◽  
Weiwei Huang

A novel high-capacity cathode material C4Q/CMK-3 for SIBs shows an initial discharge capacity of 438 mA h g−1 and a capacity retention of 219.2 mA h g−1 after 50 cycles.


2012 ◽  
Vol 1440 ◽  
Author(s):  
Jiajia Tan ◽  
Ashutosh Tiwari

ABSTRACTLi2FeP2O7 is a newly developed polyanionic cathode material for high performance lithium ion batteries. It is considered very attractive due to its large specific capacity, good thermal and chemical stability, and environmental benignity. However, the application of Li2FeP2O7 is limited by its low ionic and electronic conductivities. To overcome the above problem, a solution-based technique was successfully developed to synthesize Li2FeP2O7 powders with very fine and uniform particle size (< 1 μm), achieving much faster kinetics. The obtained Li2FeP2O7 powders were tested in lithium ion batteries by measurements of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge cycling. We found that the modified Li2FeP2O7 cathode could maintain a relatively high capacity even at fast discharge rates.


Sign in / Sign up

Export Citation Format

Share Document