scholarly journals Study of the Mechanical Behavior of Subcellular Organelles Using a 3D Finite Element Model of the Tensegrity Structure

2020 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Gholamreza Mohammadi Khunsaraki ◽  
Hanieh Niroomand Oscuii ◽  
Arkady Voloshin

A tensegrity model can be used to describe the mechanical behavior of living cells. A finite element model (FEM) was used to assess the mechanical contribution of subcellular organelles. Continuum parts like the cytoplasm and membrane were modeled as continuous elements, while the tensegrity was chosen to model the cytoskeleton and nucleoskeleton. An atomic force microscope load was implemented to simulate the external load. The cell components were loaded separately to evaluate their mechanical contributions. The analysis started with a single cytoplasm and each of the cell components was added in consecutive steps. The results showed that the cytoskeleton carried the largest part of the reaction force. The cytoplasm was the second important component of the cell’s mechanical response. It was shown that the nucleoskeleton has a stiffer structure than the membrane and cytoplasm. The cytoskeleton supported approximately 90% of the reaction force, while the cytoplasm carried 9% and the shell parts and nucleoskeleton were responsible for about 1%.

2019 ◽  
Vol 136 ◽  
pp. 04037
Author(s):  
Yang Cai ◽  
Chongwei Huang ◽  
Xi Chen ◽  
Yu Sun ◽  
Dandan Guo

Aiming at horizontal and vertical uncoordinated deformation formation in Tram Subgrade, a 3D finite element model was established, which was used to analyse the mechanical response of tram monolithic roadbed on multiple depth and width of uncoordinated deformation. The results show that the uncoordinated deformation’s depth has little influence on the mechanical behavior of roadbed, and it indicates that there was remainder disengaging under the monolithic roadbed by the load of tram. On the other side, the width of uncoordinated deformation has a remarkable effect on outstanding to the horizontal tensile stress (σdy) in the slab bottom, deflection (Dd) on the top of slab, compressive stress (σsz) on the top of soil, and deflection (Dss) on the top of soil. The deflection on the top of subgrade surface is about 1.61mm. Therefore, the designer’s attention should be paid to avoid uncoordinated deformation width in the project, and avoid destroy of monolithic slab.


Author(s):  
Arman Ahmadi ◽  
Narges Shayesteh Moghaddam ◽  
Mohammad Elahinia ◽  
Haluk E. Karaca ◽  
Reza Mirzaeifar

Selective laser melting (SLM) is an additive manufacturing technique in which complex parts can be fabricated directly by melting layers of powder from a CAD model. SLM has a wide range of application in biomedicine and other engineering areas and it has a series of advantages over traditional processing techniques. A large number of variables including laser power, scanning speed, scanning line spacing, layer thickness, material based input parameters, etc. have a considerable effect on SLM process materials. The interaction between these parameters is not completely studied. Limited studies on balling effect in SLM, densifications under different processing conditions, and laser re-melting, have been conducted that involved microstructural investigation. Grain boundaries are amongst the most important microstructural properties in polycrystalline materials with a significant effect on the fracture and plastic deformation. In SLM samples, in addition to the grain boundaries, the microstructure has another set of connecting surfaces between the melt pools. In this study, a computational framework is developed to model the mechanical response of SLM processed materials by considering both the grain boundaries and melt pool boundaries in the material. To this end, a 3D finite element model is developed to investigate the effect of various microstructural properties including the grains size, melt pools size, and pool connectivity on the macroscopic mechanical response of the SLM manufactured materials. A conventional microstructural model for studying polycrystalline materials is modified to incorporate the effect of connecting melt pools beside the grain boundaries. In this model, individual melt pools are approximated as overlapped cylinders each containing several grains and grain boundaries, which are modeled to be attached together by the cohesive zone method. This method has been used in modeling adhesives, bonded interfaces, gaskets, and rock fracture. A traction-separation description of the interface is used as the constitutive response of this model. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the material inside the grains. For the experimental verification, stainless steel 316L flat dog bone samples are fabricated by SLM and tested in tension. During fabrication, the power of laser is constant, and the scan speed is changed to study the effect of fabrication parameters on the mechanical properties of the parts and to compare the result with the finite element model.


2018 ◽  
Vol 188 ◽  
pp. 01016
Author(s):  
Androniki S. Tsiamaki ◽  
Nick K. Anifantis

The research for new materials that can withstand extreme temperatures and present good mechanical behavior is of great importance. The interest is highly focused on the utilization of composites reinforced by nanomaterials. To cope with this goal the present work studies the mechanical response of graphene reinforced nanocomposite structures subjected to temperature changes. A computational finite element model has been developed that accounts for both the reinforcement and the matrix material phases. The model developed is based on both the continuum theory and the molecular mechanics theory, for the simulation of the three different material phases of the composite, respectively, i.e. the matrix, the intermediate transition phase and the reinforcement. Considering this model, the mechanical response of an appropriate representative volume element of the nanocomposite is simulated under various temperature changes. The study involves different types of reinforcement composed from either monolayer or multilayer graphene sheets. Apart from the investigation of the behavior of a nanocomposite with each particular type of the reinforcement, comparisons are also presented between them in order to reveal optimized material combinations. The principal parameters taken into consideration, which contribute also to the mechanical behavior of the nanocomposite, are its size, the sheet multiplicity as well as the volume fraction.


Author(s):  
Zahari Taha ◽  
Mohd Hasnun Arif Hassan

The soccer ball is one of the important pieces of equipment in the game of soccer. It undergoes various forms of impact during the game. In order to numerically investigate the occasions of ball impact such as soccer heading, a validated finite element model of a soccer ball is required. Therefore, a model was developed incorporating material properties obtained from literature. To ensure the accuracy of the model, it was validated against an established soccer ball model and experimental data of the coefficient of restitution, contact time, longitudinal deformation and reaction force. In addition, a parametric study of the mesh density was also performed to determine the optimal number of elements. The developed soccer ball model was found to be in a good agreement with the literature and experimental data. This suggests that, the soccer ball model is capable of replicating the impacts of interest. This article details the development of the model and the validation processes.


Author(s):  
M Bouazizi ◽  
T Lazghab ◽  
M Soula

Stringers are stiffening members of pressurized aircraft fuselage. They provide support to the fuselage’s skin. A new stringer grid concept is proposed for conventional aircraft fuselage. Optimization is used to find the hexagonal grid that best replaces the original while keeping the same total stringer length. A finite element model is built to analyze the optimal hexagonal grid stiffened structure and compare it with the original orthogonally stiffened structure in terms of eigenfrequencies and static response to external loading. The finite element model is validated through Flugge’s analytical expressions for stiffened shells. Results show that the hexagonal grid stiffened structure yields higher eigenfrequencies with stresses and displacements comparable with that of the original structure.


Author(s):  
Erick I. Saavedra Flores ◽  
Senthil Murugan ◽  
Michael I. Friswell ◽  
Eduardo A. de Souza Neto

This paper proposes a fully coupled three-scale finite element model for the mechanical description of an alumina/magnesium alloy/epoxy composite inspired in the mechanics and architecture of wood cellulose fibres. The constitutive response of the composite (the large scale continuum) is described by means of a representative volume element (RVE, corresponding to the intermediate scale) in which the fibre is represented as a periodic alternation of alumina and magnesium alloy fractions. Furthermore, at a lower scale the overall constitutive behavior of the alumina/magnesium alloy fibre is modelled as a single material defined by a large number of RVEs (the smallest material scale) at the Gauss point (intermediate) level. Numerical material tests show that the choice of the volume fraction of alumina based on those volume fractions of crystalline cellulose found in wood cells results in a maximisation of toughness in the present bio-inspired composite.


Author(s):  
M. Tartibi ◽  
K. Komvopoulos

The mechanical behavior of eukaryotic cell components is critical to cell mobility, division, signaling, and proliferation. Cell components are in such harmony with each other that often mechanical testing of individual components produces less meaningful results than testing performed within living cells. Moreover, cell components are constantly undergoing growth and remodeling, normally through polymerization and depolymerization. An appropriate experimental and modeling framework is therefore essential for cell mechanics. In this study, a special atomic force microscope (AFM) with controlled adhesion area of the cell to a substrate was used to probe the mechanical response of cells to an external force. This experimental set up enables direct control of the applied force and precise measurement of the cell penetration by the AFM tip. A modeling framework that combines the displacement field with the applied force/stress obtained with the AFM is developed to estimate the mechanical properties of each cell component. The tribological relevance of this research is the viscoelastic deformation of cell components under different contact loads.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
D. Carnelli ◽  
D. Gastaldi ◽  
V. Sassi ◽  
R. Contro ◽  
C. Ortiz ◽  
...  

A finite element model was developed for numerical simulations of nanoindentation tests on cortical bone. The model allows for anisotropic elastic and post-yield behavior of the tissue. The material model for the post-yield behavior was obtained through a suitable linear transformation of the stress tensor components to define the properties of the real anisotropic material in terms of a fictitious isotropic solid. A tension-compression yield stress mismatch and a direction-dependent yield stress are allowed for. The constitutive parameters are determined on the basis of literature experimental data. Indentation experiments along the axial (the longitudinal direction of long bones) and transverse directions have been simulated with the purpose to calculate the indentation moduli and the tissue hardness in both the indentation directions. The results have shown that the transverse to axial mismatch of indentation moduli was correctly simulated regardless of the constitutive parameters used to describe the post-yield behavior. The axial to transverse hardness mismatch observed in experimental studies (see, for example, Rho et al. [1999, “Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation,” J. Biomed. Mater. Res., 45, pp. 48–54] for results on human tibial cortical bone) can be correctly simulated through an anisotropic yield constitutive model. Furthermore, previous experimental results have shown that cortical bone tissue subject to nanoindentation does not exhibit piling-up. The numerical model presented in this paper shows that the probe tip-tissue friction and the post-yield deformation modes play a relevant role in this respect; in particular, a small dilatation angle, ruling the volumetric inelastic strain, is required to approach the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document