Impact of Disabled Driver’s Mass Center Location on Biomechanical Parameters during Crash
Adapting a car for a disable person involves adding additional equipment to compensate for the driver’s disability. During this process, the change in the driver’s position and kinematics and their impact on safety levels during crash is not considered. There is also a lack of studies in the literature on this problem. This paper describes a methodology for conducting a study of the behavior of a disabled driver during a crash using the finite element method, based on an explicit time integration method. A validated car model and a commercial dummy model were used. The results show that the use of a handle on the steering wheel and a hand control unit causes dangerous lateral displacements relative to the seat. Amputation of the left leg or right arm causes significant shoulder rotations, amputation of the left leg causes increased thoracic loads. Amputation or additional equipment have no significant impact on head injuries.