Improved Artificial Potential Field and Dynamic Window Method for Amphibious Robot Fish Path Planning
Aiming at the problems of “local minimum” and “unreachable target” existing in the traditional artificial potential field method in path planning, an improved artificial potential field method was proposed after analyzing the fundamental causes of the above problems. The method solved the problem of local minimum by modifying the direction and influence range of the gravitational field, increasing the virtual target and evaluation function, and the problem of unreachable targets is solved by increasing gravity. In view of the change of motion state of robot fish in amphibious environments, the improved artificial potential field method was fused with a dynamic window algorithm, and a dynamic window evaluation function of the optimal path was designed on the basis of establishing the dynamic equations of land and underwater. Then, the simulation experiment was designed under the environment of Matlab2019a. Firstly, the improved and traditional artificial potential field methods were compared. The results showed that the improved artificial potential field method could solve the above two problems well, shorten the operation time and path length, and have high efficiency. Secondly, the influence of different motion modes on path planning is verified, and the result also reflects that the amphibious robot can avoid obstacles flexibly and reach the target point accurately according to its own motion ability. This paper provides a new way of path planning for the amphibious robot.