scholarly journals Numerical Phase-Field Model Validation for Dissolution of Minerals

2021 ◽  
Vol 11 (6) ◽  
pp. 2464
Author(s):  
Sha Yang ◽  
Neven Ukrainczyk ◽  
Antonio Caggiano ◽  
Eddie Koenders

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.

1982 ◽  
Vol 22 (06) ◽  
pp. 962-970 ◽  
Author(s):  
J. Novosad

Novosad, J., SPE, Petroleum Recovery Inst. Abstract Experimental procedures designed to differentiate between surfactant retained in porous media because of adsorption and surfactant retained because Of unfavorable phase behavior are developed and tested with three types of surfactants. Several series of experiments with systematic changes in one variable such as surfactant/cosurfactant ratio, slug size, or temperature are performed, and overall surfactant retention then is interpreted in terms of adsorption and losses caused by unfavorable phase behavior. Introduction Adsorption of surfactants considered for enhanced oil recovery (EOR) applications has been studied extensively in the last few years since it has been shown that it is possible to develop surfactant systems that displace oil from porous media almost completely when used in large quantities. Effective oil recovery by surfactants is not a question of principle but rather a question of economics. Since surfactants are more expensive than crude oil, development of a practical EOR technology depends on how much surfactant can be sacrificed economically while recovering additional crude oil from a reservoir.It was recognized earlier that adsorption may be only one of a number of factors that contribute to total surfactant retention. Other mechanisms may include surfactant entrapment in an immobile oil phase surfactant precipitation by divalent ions, surfactant precipitation caused by a separation of the cosurfactant from the surfactant, and surfactant precipitation resulting from chromatographic separation of different surfactant specks. The principal objective of this work is to evaluate the experimental techniques that can be used for measuring surfactant adsorption and to study experimentally two mechanisms responsible for surfactant retention. Specifically, we try to differentiate between the adsorption of surfactants at the solid/liquid interface and the retention of the surfactants because of trapping in the immobile hydrocarbon phase that remains within the core following a surfactant flood. Measurement of Adsorption at the Solid/Liquid Interface Previous adsorption measurements of surfactants considered for EOR produced adsorption isotherms of unusual shapes and unexpected features. Primarily, an adsorption maximum was observed when total surfactant retention was plotted against the concentration of injected surfactant. Numerous explanations have been offered for these peaks, such as a formation of mixed micelles, the effects of structure-forming and structurebreaking cations, and the precipitation and consequent redissolution of divalent ions. It is difficult to assess which of these effects is responsible for the peaks in a particular situation and their relative importance. However, in view of the number of physicochemical processes taking place simultaneously and the large number of components present in most systems, it seems that we should not expect smooth monotonically increasing isotherms patterned after adsorption isothemes obtained with one pure component and a solvent. Also, it should be realized that most experimental procedures do not yield an amount of surfactant adsorbed but rather a measure of the surface excess.An adsorption isotherm, expressed in terms of the surface excess as a function of an equilibrium surfactant concentration, by definition must contain a maximum if the data are measured over a sufficiently wide range of concentrations. SPEJ P. 962^


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
J. B. Allen

In this work, we develop one- and two-dimensional phase-field simulations to approximate dendritic growth of a binary Al–2 wt% Si alloy. Simulations are performed for both isothermal as well as directional solidification. Anisotropic interface energies are included with fourfold symmetries, and the dilute alloy assumption is imposed. The isothermal results confirm the decrease in the maximum concentration for larger interface velocities as well as reveal the presence of parabolic, dendrite tips evolving along directions of maximum interface energy. The directional solidification results further confirm the formation of distinctive secondary dendritic arm structures that evolve at regular intervals along the unstable solid/liquid interface.


2012 ◽  
Vol 217-219 ◽  
pp. 1516-1519 ◽  
Author(s):  
Wen Yuan Long ◽  
Wei Dong Wang ◽  
Jun Ping Yao

A phase-field approach which incorporates mass and momentum and solute conservation equations for simulation of Al-Si binary alloy solidification is studied. The effect of force flow on the dendrite growth and solute profile during the solidification of binary alloy were investigated. The results indicate that dendritic grows unsymmetrically under a forced flow, the growth velocity of the upstream tip is faster than the downstream tip. With the force flow, the upstream tip grows faster due the thinner solute boundary layer. The solute gradient in the solid/liquid interface regions of the upstream tip is higher than that of the downstream tip. The faster the flow velocity, the greater the solute gradients in the solid/liquid interface regions of the upstream tip, the thinner the diffusion layer before the upstream tip. The downstream tip is opposed to the upstream tip. The simulations agree qualitatively with the solidification theoretical results.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kirill S. Erokhin ◽  
Evgeniy G. Gordeev ◽  
Valentine P. Ananikov

AbstractPoor stability of 3D printed plastic objects in a number of solvents limits several important applications in engineering, chemistry and biology. Due to layered type of assembling, 3D-printed surfaces possess rather different properties as compared to bulk surfaces made by other methods. Here we study fundamental interactions at the solid-liquid interface and evaluate polymeric materials towards advanced additive manufacturing. A simple and universal stability test was developed for 3D printed parts and applied to a variety of thermoplastics. Specific modes of resistance/destruction were described for different plastics and their compatibility to a representative scope of solvents (aqueous and organic) was evaluated. Classification and characterization of destruction modes for a wide range of conditions (including geometry and 3D printing parameters) were carried out. Key factors of tolerance to solvent media were investigated by electron microscopy. We show that the overall stability and the mode of destruction depend on chemical properties of the polymer and the nature of interactions at the solid-liquid interface. Importantly, stability also depends on the layered microstructure of the sample, which is defined by 3D printing parameters. Developed solvent compatibility charts for a wide range of polymeric materials (ABS, PLA, PLA-Cu, PETG, SBS, Ceramo, HIPS, Primalloy, Photoresin, Nylon, Nylon-C, POM, PE, PP) and solvents represent an important benchmark for practical applications.


Sign in / Sign up

Export Citation Format

Share Document