scholarly journals Development of Shear Resistance Formula for the Y-Type Perfobond Rib Shear Connector Considering Probabilistic Characteristics

2021 ◽  
Vol 11 (9) ◽  
pp. 3877
Author(s):  
Sang-Hyo Kim ◽  
Tuvshintur Batbold ◽  
Syed Haider Ali Shah ◽  
Suro Yoon ◽  
Oneil Han

A design shear resistance formula for Y-type perfobond rib shear connectors is proposed with the various reduction factors, which can be selected depending on the target safety level. The nominal shear resistance formula is improved based on the systematic sensitivity analysis as well as the regression fit test based on 84 push-out test results, including 15 additional push-out tests to extend the application ranges and reduce the estimation errors, compared to the formula proposed in previous studies. Some design variables are additionally included in the proposed design formula: the yield strengths of rebar and rib plate. The basic design variables in the proposed design formula are (1) number of ribs and transverse rebars, (2) concrete compressive strength, (3) rebar diameter and yield strength, and (4) rib thickness, width, height, and yield strength. The application ranges of the basic design variables are recommended for the proposed design formula. The various shear resistance reduction factors are proposed based on the probabilistic ultimate shear resistance model of Y-type perfobond rib shear connectors. The proposed procedure may be recommended to develop the design formula for shear connectors with various shapes.

Author(s):  
Mohammed Abdulhussein Al-Shuwaili ◽  
Alessandro Palmeri ◽  
Maria Teresa Lombardo

Push-out tests (POTs) have been widely exploited as an alternative to the more expensive full-scale bending tests to characterize the behaviour of shear connections in steel-concrete composite beams. In these tests, two concrete slabs are typically attached to a steel section with the connectors under investigation, which are then subjected to direct shear. The results allow quantifying the relationship between applied load and displacements at the steel-concrete interface. Since this relationship is highly influenced by the boundary conditions of POT samples, different experimental setups have been used, where the slabs are either restricted or free to slide horizontally, as researchers have tried to reduce any discrepancy between POT and full-scale composite beam testing. Based on a critical review of various POT configurations presented in the dedicated literature, this paper presents an efficient one-sided POT (OSPOT) method. While OSPOT and POT specimens are similar, in the proposed OPSPOT setup only one of the two slabs is directly loaded in each test, and the slab is free to move vertically. Thus, two results can be obtained from one specimen, i.e. one from each slab. A series of POTs and OSPOTs have been conducted to investigate the behaviour and the shear resistance of headed stud connectors through the two methods of testing. The results of this study than were compared with those of different POTs setups conducted by other researchers. The new OSPOT results show in general an excellent agreement with the analytical predictions offered by both British and European standards, as well as the estimated shear resistance proposed other researchers in the literature. These findings suggest that the proposed one-sided setup could be used as an efficient and economical option for conducting the POT, as it has the potential not only to double the number of results, but also to simplify the fabrication of the samples, which is important in any large experimental campaign, and to allow testing with limited capacity of the actuator. 


2018 ◽  
Vol 26 (1) ◽  
pp. 9-18
Author(s):  
Dooyong Cho ◽  
Jinwoong Choi ◽  
Hoseong Jeong

When Perfobond Rib shear connectors are used as flexural materials in structures such as bridges, they show flexural shear behavior due to external force, rather than direct shear behavior. The aim of this study is thus to analyze the difference between both behaviors. First, we prepared a specimen to analyze direct shear behavior using Perfobond Rib shear connectors, analyzed the characteristics of behavior with a push-out test and proposed a formula of shear resistance assessment. Proposed formula shows a relatively good fit with less than 10% error. A flexural shear test was then conducted based on the result of the direct shear test. Based on the static flexural test it analyzed the flexural behavior and the flexural shear stress it calculated. Direct shear stress and EN 1994-1-1 to lead and be calculated, it compared the flexural shear stress and it analyzed in about the shear resistance stress which it follows in load direction. Finally, we compared both test results, and the comparison showed that the flexural shear stress is approximately 6% stronger than the direct shear stress.


Author(s):  
Nguyen Minh Hai ◽  
Nakajima Akinori

In steel-concrete hybrid members and structures, to ensure required stress transmission between the steel and the concrete members, shear connectors are generally arranged between the two. A perfobond strip is widely used as the shear connector in various hybrid structures, and when applying the perfobond strip it is important to confirm its shear resistance. In this study, the shear resistance of the perfobond strip without the penetrating rebar is investigated experimentally by employing a simple push-out specimen. As a result, a design formula is proposed for evaluating the shear resistance of the perfobond strip, taking into account the dimensions of concrete block and the thickness of the perfobond plate, as well as the perforation diameter, and the concrete compressive strength.


2013 ◽  
Vol 16 (4) ◽  
pp. 667-680 ◽  
Author(s):  
Zhenhai Wang ◽  
Qiao Li ◽  
Canhui Zhao

Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 769-780
Author(s):  
Yong Liu ◽  
Lanhui Guo ◽  
Jun Shi ◽  
Jingfeng Wang

2021 ◽  
Vol 1895 (1) ◽  
pp. 012065
Author(s):  
Ali. K. Tahir ◽  
Muhaned A. Shallal

2021 ◽  
Vol 164 ◽  
pp. 107831
Author(s):  
Mahmoud Hosseinpour ◽  
Mehran Zeynalian ◽  
Abdoreza Ataei ◽  
Maryam Daei

1975 ◽  
Vol 2 (1) ◽  
pp. 98-115
Author(s):  
A. E. Long ◽  
K. Van Dalen ◽  
P. Csagoly

The fatigue behavior of the negative moment region of continuous steel–concrete composite beams under Canadian temperature conditions was studied. Tests were conducted on three 26 ft 0 in. (7.92 m) long beams, continuous over a central support, and on 11 conventional push-out specimens. These were supplemented by a theoretical study of the internal forces in the beams using an iterative method of analysis.The close agreement between measured and theoretical strains and deflections indicated that good interaction was achieved throughout the length of the beams. The beams sustained 500 000 cycles of loading with no serious deterioration of composite action. The pattern of stud failures was consistent from beam to beam and reflected closely the calculated distribution of horizontal shear force at the steel–concrete interface. Stud shear connectors in the negative moment region where the slab had cracked in tension were found to be slightly less effective than studs in the positive bending moment regions.Neither the detailed study of individual connectors in the beams nor the results of the push-out tests show evidence of a reduction in the fatigue life of studs at −20 °F (−29 °C) relative to room temperature. The beams also exhibited no significant difference in their overall performance at these two temperatures.


Sign in / Sign up

Export Citation Format

Share Document