scholarly journals In Vitro Coliform Resistance to Bioactive Compounds in Urinary Infection, Assessed in a Lab Catheterization Model

2021 ◽  
Vol 11 (9) ◽  
pp. 4315
Author(s):  
Emanuel Vamanu ◽  
Laura Dorina Dinu ◽  
Cristina Mihaela Luntraru ◽  
Alexandru Suciu

Bioactive compounds and phenolic compounds are viable alternatives to antibiotics in recurrent urinary tract infections. This study aimed to use a natural functional product, based on the bioactive compounds’ composition, to inhibit the uropathogenic strains of Escherichia coli. E. coli ATCC 25922 was used to characterize the IVCM (new in vitro catheterization model). As support for reducing bacterial proliferation, the cytotoxicity against a strain of Candida albicans was also determined (over 75% at 1 mg/mL). The results were correlated with the analysis of the distribution of biologically active compounds (trans-ferulic acid-268.44 ± 0.001 mg/100 g extract and an equal quantity of Trans-p-coumaric acid and rosmarinic acid). A pronounced inhibitory effect against the uropathogenic strain E. coli 317 (4 log copy no./mL after 72 h) was determined. The results showed a targeted response to the product for tested bacterial strains. The importance of research resulted from the easy and fast characterization of the functional product with antimicrobial effect against uropathogenic strains of E. coli. This study demonstrated that the proposed in vitro model was a valuable tool for assessing urinary tract infections with E. coli.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 591 ◽  
Author(s):  
Annalisa Noce ◽  
Francesca Di Daniele ◽  
Margherita Campo ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

Urinary tract infections (UTIs) are caused by uropathogenic microorganism colonization. UTIs often require an antibiotic therapy that can cause the selection of antibiotic-resistant bacterial strains. A natural bioactive compound may represent a valid therapeutic adjuvant approach, in combination with drug therapy. In this paper, we present a pilot study, based on the administration of an oral food supplement (OFS), containing chestnut tannins and anthocyanins, to nephropathic patients suffering from recurrent UTIs (16 treated patients with 1 cp/day and 10 untreated patients). We performed laboratory tests and quality of life and body composition assessments, at T0 (baseline) and T1 (after 6 weeks OFS assumption). The analysis of OFS was performed by HPLC-DAD-MS for its content in polyphenols and by in vitro tests for its antioxidative and anti-free radical activities. In each capsule, polyphenol content was 6.21 mg (4.57 mg hydrolysable tannins, 0.94 mg anthocyanosides, 0.51 mg proanthocyanidins, 0.18 mg quercetin derivatives). A significant reduction of erythrocyte sedimentation rate was observed only in male patients. Urinalysis showed a significant reduction of leukocytes in both genders, whereas urinary bacterial flora at T1 significantly decreased only in male subjects. Tannins seem to exert an antimicrobial action according to gender, useful to counteract the recurrence of UTIs.


Author(s):  
Trâm Quế Anh

TÓM TẮT Đặt vấn đề: Xác định đúng căn nguyên gây NKĐTN và mức độ kháng kháng sinh của các vi khuẩn sẽ giúp cho việc điều trị có hiệu quả, giảm được chi phí điều trị, hạn chế sự gia tăng vi khuẩn đề kháng kháng sinh. Đối tượng và phương pháp nghiên cứu: Các chủng VK gây nhiễm khuẩn đương tiết niệu phân lập được tại bệnh viện Hữu nghị Đa khoa Nghệ An từ 1/2020 đến 12/2020. Thiết kế nghiên cứu: Cắt ngang mô tả. Kết quả: Phân lập được 473 chủng vi khuẩn gây NKĐTN, trong đó, E. coli 38,48%; P. aeruginosa 14,15; Enterococcus sp 10,57; K. pneumoniae 13,32%. E. coli: kháng các kháng sinh Cephalosporine, Quinolones từ 56,7 - 63,8%, Carbapenem 4,5 - 6,2%, sinh ESBL 49,4%. P. aeruginosa: đã kháng các kháng sinh thử nghiệm từ 59,1 - 69,2%. Enterococcus sp: kháng với các kháng sinh nhóm Quinolone 73,5%, kháng Vancomycin 8,3%; Chưa ghi nhận đề kháng Linezolid. K. pneumoniae: kháng nhóm Cephalosporin, Quinolone từ 66,7 - 74,6%, đề kháng với Carbapenem từ 46,0 - 50,8%. Kết luận: Các vi khuẩn gây nhiễm khuẩn tiết niệu thường gặp là: E. coli, P. aeruginosa, Enterococcus sp. K. pneumoniae. Các vi khuẩn phân lập được đã đề kháng với nhiều kháng sinh thường dùng với các mức độ khác nhau. Xuất hiện các chủng vi khuẩn Gram âm kháng Carbapenem, Gram dương kháng Vancomycin. Từ khóa: Nhiễm khuẩn tiết niệu, E.coli, Klebsiella, P.aeruginosa, Enterococcus sp ABSTRACT RESEARCH OF ANTIBIOTICS RESISTANCE OF BACTERIA STRAINS CAUSING URINARY TRACT INFECTIONS ISOLATED AT NGHEAN FRIENDSHIP GENERAL HOSPITAL Background: The good identification of UTI microorganism and their antimicrobial susceptibility would promote the effective treatment, reduce the cost as well as the emergence of drug resistant bacteria. Methods: Bacterial strains causing urinary tract infections were isolated at Nghe An Friendship General Hospital from 1/2020 to 12/2020. Study design: Descriptive cross section. Results: 473 bacterial strains causing UTIs were isolated, in which, E. coli 38.48%; P. aeruginosa 14.15; Enterococcus sp 10.57; K. pneumoniae 13.32%. E. coli: resistant to Cephalosporin antibiotics, Quinolones from 56.7 - 63.8%, Carbapenem 4.5 - 6.2%, producing ESBL 49.4%. P. aeruginosa: was resistant to the tested antibiotics from 59.1 - 69.2%. Enterococcus sp: resistant to Quinolone antibiotics 73.5%, resistant to Vancomycin 8.3%; Linezolid resistance has not been recorded. K. pneumoniae: resistant to Cephalosporin, Quinolone from 66.7 - 74.6%, resistant to Carbapenem from 46.0 - 50.8%. Conclusion: Common bacteria causing urinary tract infections are: E. coli, P. aeruginosa, Enterococcus sp. K. pneumoniae. The isolates were resistant to many commonly used antibiotics to varying degrees. Occurrence of strains of Gram - negative bacteria resistant to Carbapenem, Gram - positive resistant to Vancomycin. Keywords: Urinary Tract infections, E. coli, Klebsiella, P. aeruginosa, Enterococcus sp.


Author(s):  
Rachana Kanaujia ◽  
Amit Kumar ◽  
Malay Bajpai

Background: Urinary tract infections (UTIs) are one of the most common infections. For treatment of UTIs, there are limited antibiotics due to increased resistance among uropathogens. Two older antibiotics; Nitrofurantoin and Fosfomycin have become novel oral therapeutic options against uropathogens. Aim of the study was to identify UTI causing micro-organisms and evaluate in-vitro activity of nitrofurantoin and fosfomycin against most common isolated organism (E. coli).Methods: Results of urine samples culture and susceptibility testing over a period of 1 year were analysed and included in this study.Results: Micro-organisms were isolated from 568 urine samples. Most commonly isolated organism was Escherichia coli (40.50%), followed by Klebsiella spp. (20.07%) and Staphylococcus spp. (17.07%). Susceptibility of E. coli to nitrofurantoin and fosfomycin was 91.74% and 65.65% respectively. Conclusion: Good activity of nitrofurantoin and fosfomycin against E. coli indicates that these two drugs are potential therapeutic alternatives for urinary tract infections.


2021 ◽  
Vol 319 ◽  
pp. 01009
Author(s):  
Soumaia Farih ◽  
Abderrazak Saddari ◽  
Benhamza Noussaiba ◽  
Adnane Araab ◽  
Loubna Yacoubi ◽  
...  

The objectives of our work were to establish the epidemiological and bacteriological profile of female urinary tract infection at the Mohammed VI University Hospital of Oujda (Morocco), and then to study the drug resistance of the bacterial strains isolated. This is a retrospective study over 36 months including urine samples from patients hospitalized or consulting at the CHU Mohamed VI of Oujda (Morocco). Urines were processed according to the recommendations of the Medical Microbiology Reference (REMIC) and the EUCAST (European Committee on Antimicrobial Susceptibility Testing). We collected 12556 requests for CBEU from different departments. At the top of the list was the emergency department with a rate of 37% (n= 4666) followed by outpatient clinics (33.1%; n=4226). 5% (n=630) of the CBEU were positive. Escherichia coli (E. coli ) dominated the epidemiological profile with a rate of 72.50% (n=482). E. coli was resistant to penicillins in 69.50% (n=299) of cases, protected penicillins in 34.80% (n=149), third generation cephalosporins (C3G) in 9% (n=38), fluoroquinolones in 17.5% (n=73), Trimethoprim-Sulfamethoxazole in 46% (n=196) of cases and gentamicin in 12% (n=51) of cases. None of the strains were resistant to carbapenems. Awareness-raising on the proper use of antibiotics, issuing national recommendations for the treatment of urinary tract infections in order to standardize therapeutic regimens. Effective control of these infections requires a global prevention strategy that implies close collaboration between epidemiologists, clinicians, bacteriologists, hygienists and the health care team.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Allyson E. Shea ◽  
Juan Marzoa ◽  
Stephanie D. Himpsl ◽  
Sara N. Smith ◽  
Lili Zhao ◽  
...  

ABSTRACT Urinary tract infections (UTI), the second most diagnosed infectious disease worldwide, are caused primarily by uropathogenic Escherichia coli (UPEC), placing a significant financial burden on the health care system. High-throughput transposon mutagenesis combined with genome-targeted sequencing is a powerful technique to interrogate genomes for fitness genes. Genome-wide analysis of E. coli requires random libraries of at least 50,000 mutants to achieve 99.99% saturation; however, the traditional murine model of ascending UTI does not permit testing of large mutant pools due to a bottleneck during infection. To address this, an E. coli CFT073 transposon mutant ordered library of 9,216 mutants was created and insertion sites were identified. A single transposon mutant was selected for each gene to assemble a condensed library consisting of 2,913 unique nonessential mutants. Using a modified UTI model in BALB/c mice, we identified 36 genes important for colonizing the bladder, including purB, yihE, and carB. Screening of the condensed library in vitro identified yigP and ubiG to be essential for growth in human urine. Additionally, we developed a novel quantitative PCR (qPCR) technique to identify genes with fitness defects within defined subgroups of related genes (e.g., genes encoding fimbriae, toxins, etc.) following UTI. The number of mutants within these subgroups circumvents bottleneck restriction and facilitates validation of multiple mutants to generate individual competitive indices. Collectively, this study investigates the bottleneck effects during UTI, provides two techniques for evading those effects that can be applied to other disease models, and contributes a genetic tool in prototype strain CFT073 to the field. IMPORTANCE Uropathogenic Escherichia coli strains cause most uncomplicated urinary tract infections (UTI), one of the most common infectious diseases worldwide. Random transposon mutagenesis techniques have been utilized to identify essential bacterial genes during infection; however, this has been met with limitations when applied to the murine UTI model. Conventional high-throughput transposon mutagenesis screens are not feasible because of inoculum size restrictions due to a bottleneck during infection. Our study utilizes a condensed ordered transposon library, limiting the number of mutants while maintaining the largest possible genome coverage. Screening of this library in vivo, and in human urine in vitro, identified numerous candidate fitness factors. Additionally, we have developed a novel technique using qPCR to quantify bacterial outputs following infection with small subgroups of transposon mutants. Molecular approaches developed in this study will serve as useful tools to probe in vivo models that are restricted by anatomical, physiological, or genetic bottleneck limitations.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Soo Tein Ngoi ◽  
Cindy Shuan Ju Teh ◽  
Chun Wie Chong ◽  
Kartini Abdul Jabar ◽  
Shiang Chiet Tan ◽  
...  

The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76–80%), ticarcillin-clavulanate (58–76%), and piperacillin-tazobactam (48–50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.


Author(s):  
Sunil Shivaputrayya Gidamudi ◽  
Gaurav V Salunke

ABSTRACTObjective: The objective of this study was to find out the etiology of urinary tract infections (UTIs) in patients attending B.K.L. Walawalkar Hospital,Dervan and to determine their antibiotic sensitivity pattern to currently used antimicrobial agents.Methods: A cross-sectional study was conducted in a rural hospital of Konkan Maharashtra, and urine samples were collected from368 clinically - suspected cases of UTIs using the mid-stream “clean catch” method and was tested and cultured using standard procedures. Antimicrobialsusceptibility test (AST) was performed for the isolated pathogens according to the Clinical and Laboratory Standards Institute guidelines.Results: Escherichia coli (54.84%) was the most prevalent uropathogen. 76.47% of the isolated E. coli were found to be extended spectrum betalactamase producers. A higher prevalence rate of resistance was seen among E. coli to the commonly prescribed antibiotic agents. 32 (94.11%) of34 E. coli isolates recovered had multiple antibiotic resistance (MAR), with 16 isolates (50%) possessing MAR indices of 0.6.Conclusion: The study indicates the isolated microorganisms in UTI showed very high resistance to the commonly prescribed antimicrobial drugs.This suggests the monitoring and rational use of the antimicrobial agents.Keywords: Mid-stream, Culture, Uropathogen, Resistance, Multiple antibiotic resistance.


2018 ◽  
Vol 13 (03) ◽  
pp. 229-233
Author(s):  
Mevliye Yetik ◽  
Fulya Bayındır Bilman

Background Mecillinam is a β-lactam antibiotic that is increasingly being used for the treatment of uncomplicated urinary tract infections. Nevertheless, the international guidelines still recommend nitrofurantoin, fosfomycin trometamol, and pivmecillinam as first-line agents in the treatment of such infections. Aim The objective of this study was to determine the in vitro efficacy of mecillinam against Escherichia coli and Klebsiella pneumoniae strains isolated from children with urinary tract infections. Materials Methods We investigated E. coli and K. pneumoniae isolates, obtained within the period from January 2016 to October 2017, from urine samples of patients aged 0 to 16 years. Antibiotics susceptibility testing was conducted through the disk diffusion method based on the guidelines provided by EUCAST (European Committee on Antimicrobial Susceptibility Testing). Extended-spectrum β-lactamase (ESBL)-positivity was detected by the double-disk synergy test. Isolates with mecillinam inhibition-zone diameter breakpoints lower than < 15 mm were considered to be resistant according to EUCAST criteria. Results A total of 450 isolates were assessed in the study, 135 of which were ESBL-producing E.coli, 230 were non-ESBL-producing E. coli, 35 were ESBL-producing K. pneumoniae, and 50 were non-ESBL-producing K. pneumoniae isolates. Mecillinam susceptibility was observed in most of the non-ESBL-producing and ESBL-producing E. coli isolates (230/230, 100% and 115/135, 85.1%, respectively). The rates of susceptibility of the non-ESBL-producing and ESBL-producing K. pneumoniae isolates were 37/50 (74%) and 24/35 (68.6%), respectively. Conclusion The in vitro susceptibility results obtained support the usage of mecillinam as a first-line agent. The high susceptibility of non-ESBL-producing E. coli and K. pneumoniae isolates established in vitro brings the hope that this antibiotic could soon be used in clinical practice in Turkey.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Eshetu Gadisa ◽  
Elazar Tadesse

Abstract Background Medicinal plants have wide medicament application used to prevent and management of many ailments. These plants are used for primary health care in pastoralist communities who are deprived of modern medical care. They possess extensive therapeutics bioactive coupled with varied chemical structures. However, scientific validation of efficacy and safety of plants used to treat the urinary tract infections haven’t been fully exploited. The aim of this study was to evaluate antimicrobial activity and screening phytochemicals of medicinal plants used to treat urinary tract infections. Methods In-vitro experimental study was carried out to evaluate the antimicrobial effect and screening phytochemical of Rumex abyssinicus, Cucumis pustulatus, Discopodium penninervium, Lippia adoensis, Euphorbia depauperata, and Cirsium englerianum. Against drug resistance microbes. 80% methanol was used for extraction of the plant parts. The susceptibility tests were investigated using disc diffusion and broth micro-dilution methods. Results The majority of tested extracts showed antimicrobial activity on two or more drug-resistant bacteria with MIC value (1.0–128.0 μg/ml) and 9–27 mm inhibition zone in diameter. Extracts obtained from C.englerianum and E. depauperate showed more potent antibacterial activity on MRSA and Enterococcus faecalis with IZ 25 and 27 mm respectively. E. coli and K. pneumoniae were inhibited by those extracts with IZ ranging 9–25 mm and 11–27 mm respectively. E.faecalis and K. pneumoniae were more susceptible bacteria to the respective extracts. R. abyssinicus showed promising antifungal effect with had 21 mm IZ and MIC range 16-32 μg/ml on C.albicans. Alkaloids, flavonoids, phenolic and terpenoid were common phytochemical characterized in majority of screened plants. Conclusion Tested extracts exhibited significant antibacterial and antifungal activity. Hence, further structural elucidation of bioactive that inhibited the growth of microbes aforementioned plants may be used as precursors for the synthesis of new antibiotics in the future.


Sign in / Sign up

Export Citation Format

Share Document