scholarly journals Path Planning Optimization for Driverless Vehicle in Parallel Parking Integrating Radial Basis Function Neural Network

2021 ◽  
Vol 11 (17) ◽  
pp. 8178
Author(s):  
Leiyan Yu ◽  
Xianyu Wang ◽  
Zeyu Hou ◽  
Zaiyou Du ◽  
Yufeng Zeng ◽  
...  

To optimize performances such as continuous curvature, safety, and satisfying curvature constraints of the initial planning path for driverless vehicles in parallel parking, a novel method is proposed to train control points of the Bézier curve using the radial basis function neural network method. Firstly, the composition and working process of an autonomous parking system are analyzed. An experiment concerning parking space detection is conducted using an Arduino intelligent minicar with ultrasonic sensor. Based on the analysis of the parallel parking process of experienced drivers and the idea of simulating a human driver, the initial path is planned via an arc-line-arc three segment composite curve and fitted by a quintic Bézier curve to make up for the discontinuity of curvature. Then, the radial basis function neural network is established, and slopes of points of the initial path are used as input to train and obtain horizontal ordinates of four control points in the middle of the Bézier curve. Finally, simulation experiments are carried out by MATLAB, whereby parallel parking of driverless vehicle is simulated, and the effects of the proposed method are verified. Results show the trained and optimized Bézier curve as a planning path meets the requirements of continuous curvature, safety, and curvature constraints, thus improving the abilities for parallel parking in small parking spaces.

Author(s):  
Fan Yang ◽  
Zhufeng Yue ◽  
Lei Li ◽  
Weizhu Yang

Aerodynamic design is of great importance in the overall design of flight vehicles. In this study, an approach to aerodynamic design optimization is proposed by integrating Bezier curve parameterization and radial basis interpolation to enable large variation of aerodynamic profile during optimization. The Bezier curve uses the shape of a given airfoil and the radial basis function interpolation is applied to smoothly transfer the perturbation to the mesh in the whole flow field. Using design of experiments technique, the prominent design parameters that significantly affect the aerodynamic performance are determined. Aerodynamic optimizations are conducted for a wing airfoil and a blade airfoil to verify the efficiency of the proposed method. Genetic algorithm is employed in both single-objective and multiobjective design cases. Design results show that the present method can significantly improve the aerodynamic performance due to its capability to handle large shape changes of the airfoil. This work provides a useful and powerful tool to aerodynamic design with applications to various flight vehicles.


Sign in / Sign up

Export Citation Format

Share Document