scholarly journals Equivalent Analysis of Thermo-Dynamic Blow-Off Impulse under X-ray Irradiation

2021 ◽  
Vol 11 (19) ◽  
pp. 8853
Author(s):  
Dengwang Wang ◽  
Yong Gao ◽  
Wei Chen ◽  
Jing Zhang ◽  
Sheng Wang

X-ray thermodynamic effect is an important damage mode for spacecraft. Blow-off impulse as the main thermodynamic damage parameter has been widely studied by combining laboratory and numerical simulations. In this paper, most calculations and analyses have been carried out by using the self-developed software RAMA, including the equivalent calculation of blow-off impulse of monoenergetic and blackbody X-ray, and soft/hard blackbody X-ray irradiated at different incidence angles of LY-12 aluminium target. The results show that the characteristic mono-energetic X-ray can be exploited to simulate the blow-off impulse of the blackbody X-ray under certain conditions as a feasible equivalent method for the equal-flux and equal-impulse relations between mono-energetic and intense pulse blackbody of blow-off impulse. Moreover, the equivalent thermodynamic effect can be achieved between the point source radiation and parallel X-ray of X-ray. Furthermore, the cosine distribution of blow-off impulse is conducive to designing and calculating X-ray radiation load of hard aluminium corresponding to 1–5 keV blackbody spectrum. The mentioned results can be referenced for pulse X-ray simulation source and enhance the fidelity of the thermal-mechanical effect by electron beam. It is noteworthy that the study on the thermodynamic effects of intense pulsed X-ray is of high significance.

2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


Tetrahedron ◽  
2014 ◽  
Vol 70 (43) ◽  
pp. 8056-8061 ◽  
Author(s):  
Bruno Tasso ◽  
Gerolamo Pirisino ◽  
Federica Novelli ◽  
Davide Garzon ◽  
Roberta Fruttero ◽  
...  

1966 ◽  
Vol 37 (12) ◽  
pp. 4358-4363
Author(s):  
G. H. Jirgal ◽  
Earl F. Zwicker
Keyword(s):  
The Self ◽  

Biochemistry ◽  
2013 ◽  
Vol 52 (2) ◽  
pp. 282-294 ◽  
Author(s):  
Malene Hillerup Jensen ◽  
Per-Olof Wahlund ◽  
Katrine Nørgaard Toft ◽  
Jes Kristian Jacobsen ◽  
Dorte Bjerre Steensgaard ◽  
...  

1975 ◽  
Author(s):  
R. S. Preston ◽  
A. E. Dwight ◽  
A. J. Fedro ◽  
C. W. Kimball
Keyword(s):  
The Self ◽  

2001 ◽  
Vol 105 (42) ◽  
pp. 9756-9759 ◽  
Author(s):  
Satoshi Takeya ◽  
Wataru Shimada ◽  
Yasushi Kamata ◽  
Takao Ebinuma ◽  
Tsutomu Uchida ◽  
...  
Keyword(s):  
The Self ◽  

2012 ◽  
Vol 626 ◽  
pp. 138-142
Author(s):  
Saowanee Singsarothai ◽  
Vishnu Rachpech ◽  
Sutham Niyomwas

The steel substrate was coated by Fe-based composite using self-propagating high-temperature synthesis (SHS) reaction of reactant coating paste. The green paste was prepared by mixing precursor powders of Al, Fe2O3and Al2O3. It was coated on the steel substrate before igniting by oxy-acetylene flame. The effect of coating paste thickness and the additives on the resulted Fe-based composite coating was studied. The composite coating was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) couple with dispersive X-ray (EDS).


2015 ◽  
Vol 68 (2) ◽  
pp. 322 ◽  
Author(s):  
Wenlong Liu ◽  
Mengqiang Wu ◽  
Xueying Wang ◽  
Wei Wang ◽  
Dayu Liu ◽  
...  

Using a hydrothermal synthesis, the self-assembly of MnII ions and 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene with two dicarboxylate ligands, 2-nitrobenzene-1,4-dicarboxylic acid (2-H2ata) and 5-methylbenzene-1,3-dicarboxylic acid (5-CH3-H2ip) constructed two interesting coordination polymers: [Mn(2-ata)(bimb)]n (1) and {[Mn(5-CH3-ip)(bimb)1.5]·2H2O}n (2), where bimb refers to 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene. Their structures were determined by single-crystal X-ray diffraction, elemental analysis, and infrared spectroscopy. Complex 1 exhibits a 2-fold interpenetrated pcu net. Complex 2 shows an unusual polycatenated 2D+2D→3D framework. In addition, the solid-state photoluminescent properties of 1 and 2 were investigated at room temperature.


Metrologia ◽  
2011 ◽  
Vol 48 (2) ◽  
pp. S50-S54 ◽  
Author(s):  
L Ferroglio ◽  
G Mana ◽  
E Massa
Keyword(s):  
The Self ◽  

2008 ◽  
Vol 63 (3) ◽  
pp. 345-348 ◽  
Author(s):  
Artem A. Babaryk ◽  
Igor V. Zatovsky ◽  
Nikolay S. Slobodyanik ◽  
Ivan V. Ogorodnyk

A new complex phosphate K1.84Fe1.42Nb0.58(PO4)3 has been synthesized by the self-flux technique. The X-ray single crystal structure and magnetic properties were studied. The compound crystallizes in the cubic system with space group P213 (a = 9.9404(10) Å ) and belongs to the langbeinite structure type. The structure contains [M2P3O18] building units. “Closed” fragments [M8P9O60] provide space for location of two potassium atoms. Antiferromagnetic interactions were detected at low temperatures which originate from superexchange through a M(1)-O-P-O-M(2) pathway with corresponding J = −5.5(1) cm−1. The relationship between the UV/vis absorption and the structure is discussed.


Sign in / Sign up

Export Citation Format

Share Document