scholarly journals Multi-Objective Optimization for High-Dimensional Maximal Frequent Itemset Mining

2021 ◽  
Vol 11 (19) ◽  
pp. 8971
Author(s):  
Yalong Zhang ◽  
Wei Yu ◽  
Xuan Ma ◽  
Hisakazu Ogura ◽  
Dongfen Ye

The solution space of a frequent itemset generally presents exponential explosive growth because of the high-dimensional attributes of big data. However, the premise of the big data association rule analysis is to mine the frequent itemset in high-dimensional transaction sets. Traditional and classical algorithms such as the Apriori and FP-Growth algorithms, as well as their derivative algorithms, are unacceptable in practical big data analysis in an explosive solution space because of their huge consumption of storage space and running time. A multi-objective optimization algorithm was proposed to mine the frequent itemset of high-dimensional data. First, all frequent 2-itemsets were generated by scanning transaction sets based on which new items were added in as the objects of population evolution. Algorithms aim to search for the maximal frequent itemset to gather more non-void subsets because non-void subsets of frequent itemsets are all properties of frequent itemsets. During the operation of algorithms, lethal gene fragments in individuals were recorded and eliminated so that individuals may resurge. Finally, the set of the Pareto optimal solution of the frequent itemset was gained. All non-void subsets of these solutions were frequent itemsets, and all supersets are non-frequent itemsets. Finally, the practicability and validity of the proposed algorithm in big data were proven by experiments.

2021 ◽  
pp. 1-59
Author(s):  
George Cheng ◽  
G. Gary Wang ◽  
Yeong-Maw Hwang

Abstract Multi-objective optimization (MOO) problems with computationally expensive constraints are commonly seen in real-world engineering design. However, metamodel based design optimization (MBDO) approaches for MOO are often not suitable for high-dimensional problems and often do not support expensive constraints. In this work, the Situational Adaptive Kreisselmeier and Steinhauser (SAKS) method was combined with a new multi-objective trust region optimizer (MTRO) strategy to form the SAKS-MTRO method for MOO problems with expensive black-box constraint functions. The SAKS method is an approach that hybridizes the modeling and aggregation of expensive constraints and adds an adaptive strategy to control the level of hybridization. The MTRO strategy uses a combination of objective decomposition and K-means clustering to handle MOO problems. SAKS-MTRO was benchmarked against four popular multi-objective optimizers and demonstrated superior performance on average. SAKS-MTRO was also applied to optimize the design of a semiconductor substrate and the design of an industrial recessed impeller.


2020 ◽  
pp. 105-113
Author(s):  
M. Farsi

The main aim of this research is to present an optimization procedure based on the integration of operability framework and multi-objective optimization concepts to find the single optimal solution of processes. In this regard, the Desired Pareto Index is defined as the ratio of desired Pareto front to the Pareto optimal front as a quantitative criterion to analyze the performance of chemical processes. The Desired Pareto Front is defined as a part of the Pareto front that all outputs are improved compared to the conventional operating condition. To prove the efficiency of proposed optimization method, the operating conditions of ethane cracking process is optimized as a base case. The ethylene and methane production rates are selected as the objectives in the formulated multi-objective optimization problem. Based on the simulation results, applying the obtained operating conditions by the proposed optimization procedure on the ethane cracking process improve ethylene production by about 3% compared to the conventional condition.  


2021 ◽  
Vol 336 ◽  
pp. 02022
Author(s):  
Liang Meng ◽  
Wen Zhou ◽  
Yang Li ◽  
Zhibin Liu ◽  
Yajing Liu

In this paper, NSGA-Ⅱ is used to realize the dual-objective optimization and three-objective optimization of the solar-thermal photovoltaic hybrid power generation system; Compared with the optimal solution set of three-objective optimization, optimization based on technical and economic evaluation indicators belongs to the category of multi-objective optimization. It can be considered that NSGA-Ⅱ is very suitable for multi-objective optimization of solar-thermal photovoltaic hybrid power generation system and other similar multi-objective optimization problems.


Author(s):  
Christian Buschbeck ◽  
Larissa Bitterich ◽  
Christian Hauenstein ◽  
Stefan Pauliuk

Regional food supply, organic farming, and changing food consumption are three major strategies to reduce the environmental impacts of the agricultural sector. In the German Federal State of Baden-Württemberg (population: 11 million), multiple policy and economic incentives drive the uptake of these three strategies, but quantitative assessments of their overall impact abatement potential are lacking. Here, the question of how much food can be produced regionally while keeping environmental impacts within political targets is tackled by comparing a scenario of maximum productivity to an optimal solution obtained with a multi-objective optimization (MO) approach. The investigation covers almost the entirety of productive land in the state, two production practices (organic or conventional), four environmental impact categories, and three demand scenarios (base, vegetarian, and vegan). We present an area-based indicator to quantify the self-sufficiency of regional food supply, as well as the database required for its calculation. Environmental impacts are determined using life cycle assessment. Governmental goals for reducing environmental impacts from agriculture are used by the MO to determine and later rate the different Pareto-efficient solutions, resulting in an optimal solution for regional food supply under environmental constraints. In the scenario of maximal output, self-sufficiency of food supply ranged between 61% and 66% (depending on the diet), and most political targets could not be met. On the other hand, the optimal solution showed a higher share of organic production (ca. 40%–80% com¬pared to 0%) and lower self-sufficiency values (between 40% and 50%) but performs substantially better in meeting political targets for environmental impact reduction. At the county level, self-sufficiency varies between 2% for densely populated urban districts and 80% for rural counties. These results help policy-makers benchmark and refine their goalsetting regarding regional self-sufficiency and environmental impact reduction, thus ensuring effective policymaking for sustainable community development.


2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


Author(s):  
Rizk M. Rizk-Allah ◽  
Aboul Ella Hassanien

This chapter presents a hybrid optimization algorithm namely FOA-FA for solving single and multi-objective optimization problems. The proposed algorithm integrates the benefits of the fruit fly optimization algorithm (FOA) and the firefly algorithm (FA) to avoid the entrapment in the local optima and the premature convergence of the population. FOA operates in the direction of seeking the optimum solution while the firefly algorithm (FA) has been used to accelerate the optimum seeking process and speed up the convergence performance to the global solution. Further, the multi-objective optimization problem is scalarized to a single objective problem by weighting method, where the proposed algorithm is implemented to derive the non-inferior solutions that are in contrast to the optimal solution. Finally, the proposed FOA-FA algorithm is tested on different benchmark problems whether single or multi-objective aspects and two engineering applications. The numerical comparisons reveal the robustness and effectiveness of the proposed algorithm.


Author(s):  
Ken Kobayashi ◽  
Naoki Hamada ◽  
Akiyoshi Sannai ◽  
Akinori Tanaka ◽  
Kenichi Bannai ◽  
...  

Multi-objective optimization problems require simultaneously optimizing two or more objective functions. Many studies have reported that the solution set of an M-objective optimization problem often forms an (M − 1)-dimensional topological simplex (a curved line for M = 2, a curved triangle for M = 3, a curved tetrahedron for M = 4, etc.). Since the dimensionality of the solution set increases as the number of objectives grows, an exponentially large sample size is needed to cover the solution set. To reduce the required sample size, this paper proposes a Bézier simplex model and its fitting algorithm. These techniques can exploit the simplex structure of the solution set and decompose a high-dimensional surface fitting task into a sequence of low-dimensional ones. An approximation theorem of Bézier simplices is proven. Numerical experiments with synthetic and real-world optimization problems demonstrate that the proposed method achieves an accurate approximation of high-dimensional solution sets with small samples. In practice, such an approximation will be conducted in the postoptimization process and enable a better trade-off analysis.


Sign in / Sign up

Export Citation Format

Share Document