scholarly journals An Evaluation of the Microstructure of High-Aluminum Cast Iron in Terms of the Replacement of Aluminum Carbide with Titanium Carbide or Tungsten Carbide

2021 ◽  
Vol 11 (20) ◽  
pp. 9527
Author(s):  
Robert Gilewski ◽  
Dariusz Kopyciński ◽  
Edward Guzik ◽  
Andrzej Szczęsny

One of the problems with recycling is that of widespread contaminated steel scrap with an unwanted aluminum addition. In this paper, we will present a specific solution to this problem. The implementation of high-aluminum cast iron production has been considered. This cast iron is a cheap material resistant to high temperatures; additionally, it has increased abrasion resistance. Despite the above-mentioned advantages, high-aluminum cast iron has not been widely used in the industry so far, due to the difficulties encountered during machining and the occurrence of the phenomenon of spontaneous disintegration. The paper presents a method for replacing aluminum carbide with titanium carbide or tungsten carbide. This research shows that the carbide replacement procedure is sufficient in stopping the phenomenon of self-disintegration of a casting made of high-aluminum cast iron. Moreover, a new material was obtained, i.e., high-aluminum cast iron with precipitates of hard tungsten carbide and flake graphite. When considering the abrasive resistance of this material, flake graphite can be treated as the natural lubricant phase and tungsten carbide precipitation, as the hardening phase.

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5993
Author(s):  
Robert Gilewski ◽  
Dariusz Kopyciński ◽  
Edward Guzik ◽  
Andrzej Szczęsny

A suitable aluminum additive in cast iron makes it resistant to heat in a variety of environments and increases the abrasion resistance of the cast iron. It should be noted that high-aluminum cast iron has the potential to become an important eco-material. The basic elements from which it is made—iron, aluminum and a small amount of carbon—are inexpensive components. This material can be made from contaminated aluminum scrap, which is increasingly found in metallurgical scrap. The idea is to produce iron castings with the highest possible proportion of aluminum. Such castings are heat-resistant and have good abrasive properties. The only problem to be solved is to prevent the activation of the phenomenon of spontaneous decomposition. This phenomenon is related to the Al4C3 hygroscopic aluminum carbide present in the structure of cast iron. Previous attempts to determine the causes of spontaneous disintegration by various researchers do not describe them comprehensively. In this article, the mechanism of the spontaneous disintegration of high-aluminum cast iron castings is defined. The main factor is the large relative geometric dimensions of Al4C3 carbide. In addition, methods for counteracting the phenomenon of spontaneous decay are developed, which is the main goal of the research. It is found that a reduction in the size of the Al4C3 carbide or its removal lead to the disappearance of the self-disintegration effect of high-aluminum cast iron. For this purpose, an increased cooling rate of the casting is used, as well as the addition of elements (Ti, B and Bi) to cast iron, supported in some cases by heat treatment. The tests are conducted on the cast iron with the addition of 34–36% mass aluminum. The molten metal is superheated to 1540 °C and then the cast iron samples are cast at 1420 °C. A molding sand with bentonite is used to produce casting molds.


2007 ◽  
Vol 24-25 ◽  
pp. 229-232
Author(s):  
S.L. Ma ◽  
Wei Li ◽  
Cong Rong Zhu ◽  
J. Zhang ◽  
H.C. Ye

Tungsten carbide which is a hard and brittle material was ground by cast-iron bonded diamond wheel with ELID (Electrolytic In-Process Dressing) technique, for the purpose of getting high efficiency, super-precision machining. Three kinds of cast-iron bonded diamond wheels with different grain size were adopted to get different grinding efficiency and surface quality of workpieces. The grinding properties of cast-iron bonded grinding wheels with different grain size and the ground surface quality of tungsten carbide are discussed in this paper. The experiment results indicate that, under the same feeding amount, the grinding efficiency of the wheel with bigger grain size is higher, and it could make the dimension accuracy of the workpiece controllable, but the wheel with smaller grain size could get better ground surface quality. The two grinding phases are decided by the ratio between the size of abrasive grain and the thickness of the oxide layer on the grinding wheel.


2021 ◽  
pp. 4-15
Author(s):  
V. N. Danilov ◽  
L. V. Voronkova

Algorithms have been presented for calculating the velocity (in the approximation of a fine-layered model) and the attenuation coefficient of a longitudinal ultrasonic wave in cast iron, depending on the average size of graphite elements and its volume content, the calculation results for which are qualitatively confirmed experimentally. The calculation was performed using a fine-layered model of the structure, the graphite inclusions were described in the form of plane-parallel layers placed in an isotropic elastic medium (metal base). Computer simulation of acoustic paths for a mediumcast iron with flake graphite for standard direct converters is carried out in order to study the influence of such a medium on the characteristics of transmitted and received signals during ultrasonic testing. In the course of the research, a previously developed model was used to calculate the attenuation coefficient of longitudinal waves in cast iron with flake graphite due to their Rayleigh and phase scattering on graphite inclusions. Computer simulation of the acoustic characteristics of the signals of a direct linear probe with a phased array in cast iron with flake graphite was carried out, during which the shape of the acoustic pulses of the longitudinal wave was calculated, depending on the distance traveled by the wave and the value of the attenuation coefficient for various models of cast iron. The main modeled characteristics of the transducer include the directivity characteristic and the change in the signal amplitude along the acoustic axis. It is shown that for cast iron with flake graphite, there are cases when the directivity of the probe with a phased array transmitted into the cast iron is practically absent.


2021 ◽  
Vol 15 (4) ◽  
pp. 504-509
Author(s):  
Imre Kiss

The objectives of this research is to study and understand the nodulizing of ductile iron using in-ladle treatment process. Among the more common nodulizing agents is magnesium (Mg) which is conventionally added to the cast iron by combining suitable alloys of one or both of these elements with molten cast iron. Depending on the characteristics of each master alloy used as nodulizer, different treatment methods and techniques are used, among these, the most widely used being in-ladle, in-mould, and flow-through, the first being the most used. This research deals with the parameters, that affect the quality of ductile iron produced using in-ladle treatment process. The parameters involved are the percentage of magnesium–ferrosilicon (Fe–Si–Mg) used and the nodulizing technique. In-ladle treatment used consists of a deep pocket into the bottom of ladle, in which magnesium–ferrosilicon is placed into it together with a steel scrap barrier (steel sheets) or calcium carbide. This study, take into account, the degree of assimilation of magnesium, which shows the performance of the chosen process, depending on the nodulizer used and the temperature of the treatment.


Sign in / Sign up

Export Citation Format

Share Document