scholarly journals New Sintered Porous Scaffolds of Mg,Sr Co-Substituted Hydroxyapatite Support Growth and Differentiation of Primary Human Osteoblasts In Vitro

2021 ◽  
Vol 11 (20) ◽  
pp. 9723
Author(s):  
Carlo Galli ◽  
Elena Landi ◽  
Silvana Belletti ◽  
Maria Teresa Colangelo ◽  
Stefano Guizzardi

Strontium (Sr) and Magnesium (Mg) are bioactive ions that have been proven to exert a beneficial effect on bone; therefore, their incorporation into bone substitutes has long been viewed as a possible approach to improve tissue integration. However, the thermal instability of Mg-substituted hydroxyapatites has hitherto limited development. We previously described the creation of thermally consolidated porous constructs of Mg,Sr co-substituted apatites with adequate mechanical properties for their clinical use. The present paper describes the biocompatibility of Mg,Sr co-substituted granules using an alveolar-bone-derived primary model of human osteoblasts. Cells were cultured in the presence of different amounts of hydroxyapatite (HA), Sr-substituted HA, or MgSrHA porous macrogranules (with a size of 400–600 microns, obtained by grinding and sieving the sintered scaffolds) for three and seven days, and their viability was measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Protein content was measured using the Lowry assay at the same time points. Cell viability was not impaired by any of the tested compounds. Indirect and direct biocompatibility of these macrogranules was assessed by culturing cells in a previously conditioned medium with HA, SrHA, or MgSrHA, or in the presence of material granules. Osteoblasts formed larger and more numerous nodules around SrHA or MgSrHA granules. Furthermore, cell differentiation was evaluated by alkaline phosphatase staining of primary cells cultured in the presence of HA, SrHA, or MgSrHA granules, confirming the increased osteoconductivity of the doped materials.

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
S. Lemonnier ◽  
T. Bouderlique ◽  
S. Naili ◽  
H. Rouard ◽  
J. Courty ◽  
...  

The use of filling biomaterials or tissue-engineered large bone implant-coupling biocompatible materials and human bone marrow mesenchymal stromal cells seems to be a promising approach to treat critical-sized bone defects. However, the cellular seeding onto and into large porous scaffolds still remains challenging since this process highly depends on the porous microstructure. Indeed, the cells may mainly colonize the periphery of the scaffold, leaving its volume almost free of cells. In this study, we carry out an in vitro study to analyze the ability of a commercialized scaffold to be in vivo colonized by cells. We investigate the influence of various physical parameters on the seeding efficiency of a perfusion seeding protocol using large manufactured bone substitutes. The present study shows that the velocity of the perfusion fluid and the initial cell density seem to impact the seeding results and to have a negative effect on the cellular viability, whereas the duration of the fluid perfusion and the nature of the flow (steady versus pulsed) did not show any influence on either the fraction of seeded cells or the cellular viability rate. However, the cellular repartition after seeding remains highly heterogeneous.


2019 ◽  
Vol 19 (8) ◽  
pp. 631-640 ◽  
Author(s):  
Omel Baneen Qallandar ◽  
Faeza Ebrahimi ◽  
Farhadul Islam ◽  
Riajul Wahab ◽  
Bin Qiao ◽  
...  

Background: Co-culture of cancer cells with alveolar bone cells could modulate bone invasion and destructions. However, the mechanisms of interaction between oral squamous cell carcinoma (OSCC) and bone cells remain unclear. Objective: The aim of this study is to analyse the direct and indirect effects of OSCC cells in the stimulation of osteolytic activity and bone invasion. Methods: Direct co-culture was achieved by culturing OSCC (TCA8113) with a primary alveolar bone cell line. In the indirect co-culture, the supernatant of TCA8113 cells was collected to culture the alveolar bone cells. To assess the bone invasion properties, in vitro assays were performed. Results: The proliferation of co-cultured cancer cells was significantly (p<0.05) higher in comparison to the monolayer control cells. However, the proliferation rates were not significantly different between direct and indirect co-cultured cells with indirect co-cultured cells proliferated slightly more than the direct co-cultured cells. Invasion and migration capacities of co-cultured OSCC and alveolar bone cells enhanced significantly (p<0.05) when compared to that of control monolayer counterparts. Most importantly, we noted that OSCC cells directly co-cultured with alveolar bone cells stimulated pronounced bone collagen destruction. In addition, stem cells and epithelialmesenchymal transition markers have shown significant changes in their expression in co-cultured cells. Conclusion: In conclusion, the findings of this study highlight the importance of the interaction of alveolar bone cells and OSCC cells in co-culture setting in the pathogenesis of bone invasion. This may help in the development of potential future biotherapies for bone invasion in OSCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

AbstractA variety of bone-related diseases and injures and limitations of traditional regeneration methods require new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implantation in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds, and we evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, and the mechanical and chemical properties of scaffolds were characterized, showing three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. The rGO coating enhanced the mechanical strength of Col-rGO scaffolds to a greater extent than Col scaffolds by 2.8 times. Furthermore, Col-rGO scaffolds confirmed that graphene addition induced no cytotoxic effects and enhanced the viability and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) with 3D adherence and expansion. Finally, scaffold implantation into rabbit cranial bone defects for 12 weeks showed increased bone formation, confirmed by Hematoxylin–Eosin (H&E) and alizarin red staining. Overall, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 136
Author(s):  
Masahiko Terauchi ◽  
Atsushi Tamura ◽  
Yoshinori Arisaka ◽  
Hiroki Masuda ◽  
Tetsuya Yoda ◽  
...  

Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.


2021 ◽  
Vol 56 (2) ◽  
pp. 109-116
Author(s):  
Radoslav Omelka ◽  
Veronika Kovacova ◽  
Vladimira Mondockova ◽  
Birgit Grosskopf ◽  
Adriana Kolesarova ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


2021 ◽  
pp. 105566562110076
Author(s):  
Caroline Dissaux ◽  
Laetitia Ruffenach ◽  
Catherine Bruant-Rodier ◽  
Daniel George ◽  
Frédéric Bodin ◽  
...  

Introduction: Since the early stages of alveolar bone grafting development, multiple types of materials have been used. Iliac cancellous bone graft (ICBG) remains the gold standard. Design/Methods: A review of literature is conducted in order to describe the different bone filling possibilities, autologous or not, and to assess their effectiveness compared to ICBG. This review focused on studies reporting volumetric assessment of the alveolar cleft graft result (by computed tomography scan or cone beam computed tomography). Results: Grafting materials fall into 3 types: autologous bone grafts, ICBG supplementary material, and bone substitutes. Among autologous materials, no study showed the superiority of any other bone origin over iliac cancellous bone. Yet ICBG gives inconsistent results and presents donor site morbidity. Concerning supplementary material, only 3 studies could show a benefit of adding platelet-rich fibrin (1 study) or platelet-rich plasma (2 studies) to ICBG, which remains controversial in most studies. There is a lack of 3-dimensional (3D) assessment in most articles concerning the use of scaffolds. Only one study showed graft improvement when adding acellular dermal matrix to ICBG. Looking at bone substitutes highlights failures among bioceramics alone, side-effects with bone morphogenetic protein-2 composite materials, and difficulties in cell therapy setup. Studies assessing cell therapy–based substitutes show comparable efficacy with ICBG but remain too few. Conclusion: This review highlights the lack of 3D assessments in the alveolar bone graft materials field. Nothing dethroned ICBG from its position as the gold standard treatment at this time.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


2020 ◽  
Vol 34 ◽  
pp. 205873842097489
Author(s):  
Jiang Wang ◽  
Bo Wang ◽  
Xin Lv ◽  
Yingjie Wang

Periodontitis is an inflammatory disease caused by host immune response, resulting in a loss of periodontium and alveolar bone. Immune cells, such as T cells and macrophages, play a critical role in the periodontitis onset. Halofuginone, a natural quinazolinone alkaloid, has been shown to possess anti-fibrosis, anti-cancer, and immunomodulatory properties. However, the effect of halofuginone on periodontitis has never been reported. In this study, a ligature-induced mice model of periodontitis was applied to investigate the potential beneficial effect of halofuginone on periodontitis. We demonstrated that the administration of halofuginone significantly reduced the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in vivo, and markedly suppressed immune cell infiltration into the infected sites. Furthermore, we also observed that halofuginone treatment blocked the T-helper 17 (Th17) cell differentiation in vivo and in vitro. We demonstrated for the first time that halofuginone alleviated the onset of periodontitis through reducing immune responses.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sospeter N. Njeru ◽  
Jackson M. Muema

Abstract Objectives We and others have shown that Aspilia pluriseta is associated with various biological activities. However, there is a lack of information on its cytotoxicity. This has created an information gap about the safety of A. pluriseta extracts. As an extension to our recent publication on the antimicrobial activity and the phytochemical characterization of A. pluriseta root extracts, here we report on cytotoxicity of tested solvent fractions. We evaluated the potential cytotoxicity of these root extract fractions on Vero cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results We show that all solvent extract fractions (except methanolic solvent fractions) had cytotoxic concentration values that killed 50% of the Vero cells (CC50) greater than 20 µg/mL and selectivity index (SI) greater than 1.0. Taken together, we demonstrate that, A. pluriseta extract fractions’ earlier reported bioactivities are within the acceptable cytotoxicity and selective index limits. This finding scientifically validates the potential use of A. pluriseta in the discovery of safe therapeutics agents.


Sign in / Sign up

Export Citation Format

Share Document