scholarly journals Development of a Motorized Hospital Bed with Swerve Drive Modules for Holonomic Mobility

2021 ◽  
Vol 11 (23) ◽  
pp. 11356
Author(s):  
Radon Dhelika ◽  
Ali Fajar Hadi ◽  
Prasandhya Astagiri Yusuf

In hospitals; transferring patients using hospital beds is time consuming and inefficient. Additionally; the task of frequently pushing and pulling beds poses physical injury risks to nurses and caregivers. Motorized hospital beds with holonomic mobility have been previously proposed. However; most such beds come with complex drivetrain which makes them costly and hinders larger-scale adoption in hospitals. In this study; a motorized hospital bed that utilizes a swerve drive mechanism is proposed. The design takes into account simplicity which would allow for minimum modification of the existing beds. Two DC motors for steering and propulsion are used for a single swerve drive module. The control of the propulsion motor is achieved by a combination of trajectory planning based on quintic polynomials and PID control. Further; the control performance of the proposed bed was evaluated; and the holonomic mobility of its prototype was successfully demonstrated. An average error of less than 3% was obtained for motion with a constant velocity; however; larger values in the range of 15% were observed for other conditions, such as accelerating and decelerating.

2011 ◽  
Vol 152 (20) ◽  
pp. 797-801 ◽  
Author(s):  
Miklós Gresz

In the past decades the bed occupancy of hospitals in Hungary has been calculated from the average of in-patient days and the number of beds during a given period of time. This is the only measure being currently looked at when evaluating the performance of hospitals and changing their bed capacity. The author outlines how limited is the use of this indicator and what other statistical indicators may characterize the occupancy of hospital beds. Since adjustment of capacity to patient needs becomes increasingly important, it is essential to find indicator(s) that can be easily applied in practice and can assist medical personal and funders who do not work with statistics. Author recommends the use of daily bed occupancy as a base for all these statistical indicators. Orv. Hetil., 2011, 152, 797–801.


Author(s):  
Andrean George W

Abstract - Control and monitoring of the rotational speed of a wheel (DC motor) in a process system is very important role in the implementation of the industry. PWM control and monitoring for wheel rotational speed on a pair of DC motors uses computer interface devices where in the industry this is needed to facilitate operators in controlling and monitoring motor speed. In order to obtain the best controller, tuning the Integral Derifative (PID) controller parameter is done. In this tuning we can know the value of proportional gain (Kp), integral time (Ti) and derivative time (Td). The PID controller will give action to the DC motor control based on the error obtained, the desired DC motor rotation value is called the set point. LabVIEW software is used as a PE monitor, motor speed control. Keyword : LabView, Motor DC, Arduino, LabView, PID.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 31
Author(s):  
Dushko Stavrov ◽  
Gorjan Nadzinski ◽  
Stojche Deskovski ◽  
Mile Stankovski

In this paper, we discuss an improved version of the conventional PID (Proportional–Integral–Derivative) controller, the Dynamically Updated PID (DUPID) controller. The DUPID is a control solution which preserves the advantages of the PID controller and tends to improve them by introducing a quadratic error model in the PID control structure. The quadratic error model is constructed over a window of past error points. The objective is to use the model to give the conventional PID controller the awareness needed to battle the effects caused by the variation of the parameters. The quality of the predictions that the model is able to deliver depends on the appropriate selection of data used for its construction. In this regard, the paper discusses two algorithms, named 1D (one dimensional) and 2D (two dimensional) DUPID. Appropriate to their names, the former selects data based on one coordinate, whereas the latter selects the data based on two coordinates. Both these versions of the DUPID controller are compared to the conventional PID controller with respect to their capabilities of controlling a Continuous Stirred Tank Reactor (CSTR) system with varying parameters in three different scenarios. As a quantifying measure of the control performance, the integral of absolute error (IAE) metric is used. The results from the performed simulations indicated that the two versions of the DUPID controller improved the control performance of the conventional PID controller in all scenarios.


2014 ◽  
Vol 685 ◽  
pp. 368-372 ◽  
Author(s):  
Hao Zhang ◽  
Ya Jie Zhang ◽  
Yan Gu Zhang

In this study, we presented a boiler combustion robust control method under load changes based on the least squares support vector machine, PID parameters are on-line adjusted and identified by LSSVM, optimum control output is obtained. The simulation result shows control performance of the intelligent control algorithm is superior to traditional control algorithm and fuzzy PID control algorithm, the study provides a new control method for strong non-linear boiler combustion control system.


2014 ◽  
Vol 525 ◽  
pp. 583-587
Author(s):  
Bing Tu ◽  
Wei Zhang ◽  
Teng Xi Zhan

This paper presented a excitation liquid-cooled retarder control system based on a microprocessor MC9SXS128. In order to achieve the constant speed, It used PWM to adjust the output current of excitation liquid-cooled retarder. It analyzed and calculated the inductance value in PWM output circuit and also analyzed the excitation liquid-cooled retarder control systematical mathematical model . It divided the brake stalls based on the current flowing through the field coil. by adding the PID closed-loop control system, the retarder could quickly reach the set speed. It tested the PID control algorithm at the experiments in retarder drum test rig and the results show that the control algorithm has good control performance to meet the application requirements.


AIChE Journal ◽  
2004 ◽  
Vol 50 (6) ◽  
pp. 1211-1218 ◽  
Author(s):  
Byung-Su Ko ◽  
Thomas F. Edgar

2011 ◽  
Vol 383-390 ◽  
pp. 5972-5977
Author(s):  
Song Gao ◽  
Xiao Xia Xu ◽  
Qin Kun Xiao ◽  
Quan Pan

In order to improve the control performance of airborne EO tracking systems, we develop a proposed variable universe control algorithm based on fuzzy reasoning. The algorithm combines a new fuzzy control algorithm with classic PID control algorithm and greatly improves the dynamic performance of the airborne EO tracking systems. The simulation results indicate that the adaptive fuzzy controller can ensure the precision of the system with better adaptability and robustness.


Sign in / Sign up

Export Citation Format

Share Document