scholarly journals Reconstruction of Ultra-High Vacuum Mass Spectra Using Genetic Algorithms

2021 ◽  
Vol 11 (24) ◽  
pp. 11754
Author(s):  
Carlos Flores-Garrigós ◽  
Juan Vicent-Camisón ◽  
Juan J. Garcés-Iniesta ◽  
Emilio Soria-Olivas ◽  
Juan Gómez-Sanchís ◽  
...  

In ultra-high vacuum systems, obtaining the composition of a mass spectrum is often a challenging task due to the highly overlapping nature of the individual profiles of the gas species that contribute to that spectrum, as well as the high differences in terms of degree of contribution (several orders of magnitude). This problem is even more complex when not only the presence but also a quantitative estimation of the contribution (partial pressure) of each species is required. This paper aims at estimating the relative contribution of each species in a target mass spectrum by combining a state-of-the-art machine learning method (multilabel classifier) to obtain a pool of candidate species based on a threshold applied to the probability scores given by the classifier with a genetic algorithm that aims at finding the partial pressure at which each one of the species contributes to the target mass spectrum. For this purpose, we use a dataset of synthetically generated samples. We explore different acceptance thresholds for the generation of initial populations, and we establish comparative metrics against the most novel method to date for automatically obtaining partial pressure contributions. Our results show a clear advantage in terms of the integral error metric (up to 112 times lower for simpler spectra) and computational times (up to 4 times lower for complex spectra) in favor of the proposed method, which is considered a substantial improvement for this task.

2001 ◽  
Vol 672 ◽  
Author(s):  
Christoph Ettl ◽  
Lothar Berger ◽  
Joachim W. Mrosk ◽  
Hans-Jörg Fecht

ABSTRACTAmorphous metal alloys are ideally suited for interconnects in micro-electromechanical sys- tems (MEMS) because of their resistance against stress- and electromigration, and their stability in chemically aggressive environments, which should both lead to a substantial improvement of lifetime and reliability of robust sensors. While amorphous refractory metal alloys and amor- phous silicides are excellent interconnect materials for devices operating at elevated tempera- tures, these systems lack the cost-effective and easy interconnect processing of the prevalent polycrystalline aluminum alloy metallizations. Amorphous aluminum alloys are applicable to devices operating at up to 200°C, and their stressmigration resistance and chemical stability is far superior to conventional polycrystalline aluminum alloys. These new metallizations are very promising for processing interconnects, in particular because of their high strength and ductility, though having low density, and their relatively low electrical resistivity compared to other amor- phous metal alloys. Therefore these metallizations are especially suited for surface acoustic wave (SAW) sensors, where the interconnects are exposed to considerable mechanical strains. In this work amorphous Aluminum Yttrium alloy thin film metallizations deposited on appropriate sub- strates at room temperature (R.T.) by ultra-high vacuum (UHV) electron beam evaporation will be presented, and their mechanical and electronic properties together with their temperature sta- bility will be investigated.


1997 ◽  
Vol 3 (S2) ◽  
pp. 475-476
Author(s):  
M. Yeadon ◽  
M.T. Marshall ◽  
J.M. Gibson

Group III-nitride thin films are currently of great interest for use in wide-bandgap semiconductor applications including UV lasers and light emitting diodes (LEDs). Sapphire (a-Al2O3) is currently the substrate of choice for the growth of GaN despite a large lattice mismatch. Growth of high quality GaN epilayers typically involves the deposition of a buffer layer of either AIN or GaN at a temperature well below that used for the growth of the active GaN layer. It has been found empirically that nitridation of the sapphire surface with nascent nitrogen prior to growth of the buffer layer results in a substantial improvement in film quality. Using a novel ultra-high vacuum (UHV) in-situ TEM with in-situ RMBE, we have studied the nitridation of the (0001) sapphire surface using transmission and reflection electron microscopy (REM), reflection high energy electron diffraction (RHEED) and Auger electron spectroscopy (AES).An electron-transparent sapphire TEM sample was annealed at 1400°C for 12 hours in flowing oxygen, to form atomically flat surfaces for our investigation.


Sign in / Sign up

Export Citation Format

Share Document