scholarly journals Implementation of a Floating Head Pressure Condensation Control to Reduce Electrical Energy Consumption in an Industrial Refrigeration System

2021 ◽  
Vol 11 (24) ◽  
pp. 11923
Author(s):  
Fábio Luiz da Costa Carrir ◽  
Cesare Biserni ◽  
Danilo Barreto Aguiar ◽  
Elizaldo Domingues dos Santos ◽  
Ivoni Carlos Acunha Júnior

The growing global demand for energy and the costly taxes on electric energy demonstrate the importance of seeking new techniques to improve energy efficiency in industrial facilities. Refrigeration units demand a large amount of electricity due to the high power needs of the components of the system. One strategy to reduce the electric energy consumption in these facilities is pressure condensation control. The objective here was to develop a logical control model where the physical quantities in the thermodynamic process can be monitored and used to determine the optimum point of the condensation pressure and the mass flow rate of the air in the evaporative condenser. The algorithm developed was validated through experiments and was posteriorly implemented in an ammonia industrial system of refrigeration over a period of sixteen months (480 days). The results showed that the operation of the evaporative condenser with a controlled air mass flow rate by logical modeling achieved a reduction of 7.5% in the consumption of electric energy, leading to a significant reduction in the operational cost of the refrigeration plant.

2020 ◽  
Vol 11 (1) ◽  
pp. 267
Author(s):  
Han-Tang Lin ◽  
Yunn-Horng Guu ◽  
Wei-Hsuan Hsu

Global warming, climate change, and ever-increasing energy demand are among the pressing challenges currently facing humanity. Particularly, indoor air conditioning, a major source of energy consumption, requires immediate improvement to prevent energy crises. In this study, various airfoil profiles were applied to create a window-type convection device that entrains air to improve convection between indoor and outdoor airflows and adjust the indoor temperature. How the geometric structure of the convection device affects its air entrainment performance was investigated on the basis of various airfoil profiles and outlet slit sizes of the airflow multiplier. The airfoil profiles were designed according to the 4-digit series developed by the National Advisory Committee for Aeronautics. The results revealed that airfoil thickness, airfoil camber, and air outlet slit size affected the mass flow rate of the convection device. Overall, the mass flow rate at the outlet of the convection device was more than 10 times greater than at the inlet, demonstrating the potential of the device to improve air convection. To validate these simulated results, the wind-deflector plate was processed using the NACA4424 airfoil with a 1.2 mm slit, and various operating voltages were applied to the convection device to measure the resulting wind speeds and calculate the corresponding mass flow rates. The experimental and simulated results were similar, with a mean error of <7%, indicating that the airfoil-shaped wind-deflector plate substantially improved air entrainment of the convection device to the goal of reduced energy consumption and carbon emissions.


2012 ◽  
Vol 16 (3) ◽  
pp. 131
Author(s):  
Didik Ariwibowo

Didik Ariwibowo, in this paper explain that energy audit activities conducted through several phases, namely: the initial audit, detailed audit, analysis of energy savings opportunities, and the proposed energy savings. Total energy consumed consists of electrical energy, fuel, and materials in this case is water. Electrical energy consumption data obtained from payment of electricity accounts for a year while consumption of fuel and water obtained from the payment of material procurement. From the calculation data, IKE hotels accounted for 420.867 kWh/m2.tahun, while the IKE standards for the hotel is 300 kWh/m2.tahun. Thus, IKE hotel included categorized wasteful in energy usage. The largest energy consumption on electric energy consumption. Largest electric energy consumption is on the air conditioning (AC-air conditioning) that is equal to 71.3%, and lighting and electrical equipment at 27.28%, and hot water supply system by 4.44%. Electrical energy consumption in AC looks very big. Ministry of Energy and Mineral Resources of the statutes, the profile of energy use by air conditioning at the hotel by 48.5%. With these considerations in the AC target for audit detail as the next phase of activity. The results of a detailed audit analysis to find an air conditioning system energy savings opportunities in pumping systems. Recommendations on these savings is the integration of automation on the pumping system and fan coil units (FCU). The principle of energy conservation in the pumping system is by installing variable speed drives (VSD) pump drive motor to adjust speed according to load on the FCU. Load variations FCU provide input on the VSD pumps to match. Adaptation is predicted pump can save electricity consumption up to 65.7%. Keywords: energy audit, IKE, AC


Author(s):  
Mushtaq I. Hasan ◽  
Dhay Mohammed Muter

Usually, poultry houses are located in a remote area where there is no electricity, and where there is electricity, it is expensive, so resorting to these solutions is considered important solutions to save electrical energy and provide free cooling. The main part of generated energy is consumed by cooling and heating systems. One of the well-known approaches to implemented heating and cooling system is earth to air heat exchanger (EAHE) system. This system is effective passive heating and cooling systems which can be used with poultry houses and building. This research studies numerically the effect of mass flow rate on the overall performance of earth to air HE for poultry houses. Four parameters (mass flow rate, required rate, required cooling load and pipe lengths) are selected under environment of Nasiriyah city (a city located in the south of Iraq). The study is conducted using PVC material. The study has been done during summer season. The suggested numerical model has been tested and validated using existing approaches selected from literature review papers. This test shows good agreement with results of selected papers. Moreover, validation and simulation results showed that the required cooling load increased with increasing mass flow rate. Also, with the increasing length of pipe of EAHE, the inflow temperature compared to the space temperature is decreased. However, the overall performance factor of EAHEs decreases by the increase of length of pipe and mass flow rate. Which indicate the possibility of using the earth to air heat exchanger for cooling and heating poultry houses and reduce the use of electrical energy.


2008 ◽  
Vol 62 (4) ◽  
pp. 233-245
Author(s):  
Milorad Krgovic ◽  
Vladimir Valent ◽  
Marina Krsikapa ◽  
Miodrag Milojevic ◽  
Branko Raseta ◽  
...  

In this work, phenomena of heat and mass transfer in process of paper drying are given, certain technology units are analyzed, while possibility for decrease of specific heat and electric energy consumption by modernization of technology is examined. Some of the solutions applied on paper machines worldwide in order to improve energy efficiency are shown. Theoretic and practical discoveries in this area are applied in Board factory UMKA, and these results are shown in the work as well.


Author(s):  
Борис Петрович Новосельцев ◽  
Ирина Игоревна Шамилова

Объём потребления энергии, в том числе и электрической, в нашей стране непрерывно увеличивается. В связи с этим возникает необходимость максимального снижения затрат электрической энергии. В статье рассматривается возможность снижения электрической энергии в приточных системах вентиляции за счёт использования вентиляторов-доводчиков. Приведены результаты аэродинамического расчета двух вариантов приточной системы вентиляции промышленного здания. Первый вариант - традиционная схема с одним общим центральным вентилятором. Второй вариант - схема с использованием вентиляторов-доводчиков на отдельных ветвях системы. В результате проведенных расчетов показано, что установка вентиляторов-доводчиков позволит существенно снизить нагрузку на привод центрального вентилятора. The volume of energy consumption, including electricity, in our country is constantly increasing. In this regard, it becomes necessary to reduce the cost of electrical energy as much as possible. The article discusses the possibility of reducing electrical energy in supply ventilation systems through the use of fans. We present the results of the aerodynamic calculation of two variants of the supply ventilation system of an industrial building. The first option is the traditional scheme with one common central fan. The second option is a scheme using fan coil units on separate branches of the system. As a result of the calculations, it is shown that the installation of fan coil units will significantly reduce the load on the central fan drive.


2021 ◽  
Vol 939 (1) ◽  
pp. 012001
Author(s):  
T Kamalov ◽  
A Isakov ◽  
A Shavazov ◽  
A Elmuratova ◽  
B Tukhtamishev

Abstract The issues of developing a methodology for calculating the specific rates of electrical energy consumption during frequency regulation of electric drives of pumping stations are considered. When calculating specific consumption rates, experimental studies were carried out at the Chirchik pumping station. When developing the methodology, technological, design parameters, water consumption, as well as the total capacity of pumping units based on frequency-controlled electric drives are taken into account. At the same time, the characteristics of the main parameters that must be taken into account when choosing variable frequency drives for pumping units are determined.


2015 ◽  
Author(s):  
J. M. Barroso-Maldonado ◽  
J. M. Belman-Flores ◽  
C. Rubio-Maya

Transitioning from R134a refrigerant to a low global warming potential (GWP) refrigerant is a current issue of global importance. Although any refrigerant still has set; there are a few options to replace it such as the R1234yf. In this paper is presented a semi-empirical model to assess the energy performance of mixtures with R134a and its possible substitute R1234yf. The inputs variables to the computational model are: suction conditions (pressure and temperature), discharge pressure and rotation speed. With these variables the model must compute the following parameters: mass flow rate, discharge temperature and energy consumption. The model is validated with data obtained from an experimental facility; calculations are obtained within a relative error band of ±10% for mass flow rate and energy consumption, and an error of ±1 K for discharge temperature. Finally, the model is carried out to an energy simulation in order to predict the behavior of different mass fractions of R1234yf. Energy savings are found when R1234yf mass fraction is reduced from 1 to 0.9. Knowing that the mixture with y=0.9 may be used as its GWP is 150.


2020 ◽  
Author(s):  
Muhammad Irfan Dzaky ◽  
Engkos Achmad Kosasih ◽  
Ahmad Zikri ◽  
Salsabil Dwikusuma Prasetyo ◽  
Muhammad Badra Shidqi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document