scholarly journals Multi-Population Parallel Wolf Pack Algorithm for Task Assignment of UAV Swarm

2021 ◽  
Vol 11 (24) ◽  
pp. 11996
Author(s):  
Yingtong Lu ◽  
Yaofei Ma ◽  
Jiangyun Wang

The effectiveness of the Wolf Pack Algorithm (WPA) in high-dimensional discrete optimization problems has been verified in previous studies; however, it usually takes too long to obtain the best solution. This paper proposes the Multi-Population Parallel Wolf Pack Algorithm (MPPWPA), in which the size of the wolf population is reduced by dividing the population into multiple sub-populations that optimize independently at the same time. Using the approximate average division method, the population is divided into multiple equal mass sub-populations whose better individuals constitute an elite sub-population. Through the elite-mass population distribution, those better individuals are optimized twice by the elite sub-population and mass sub-populations, which can accelerate the convergence. In order to maintain the population diversity, population pretreatment is proposed. The sub-populations migrate according to a constant migration probability and the migration of sub-populations are equivalent to the re-division of the confluent population. Finally, the proposed algorithm is carried out in a synchronous parallel system. Through the simulation experiments on the task assignment of the UAV swarm in three scenarios whose dimensions of solution space are 8, 30 and 150, the MPPWPA is verified as being effective in improving the optimization performance.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chang-Jian Sun ◽  
Fang Gao

The marine predators algorithm (MPA) is a novel population-based optimization method that has been widely used in real-world optimization applications. However, MPA can easily fall into a local optimum because of the lack of population diversity in the late stage of optimization. To overcome this shortcoming, this paper proposes an MPA variant with a hybrid estimation distribution algorithm (EDA) and a Gaussian random walk strategy, namely, HEGMPA. The initial population is constructed using cubic mapping to enhance the diversity of individuals in the population. Then, EDA is adapted into MPA to modify the evolutionary direction using the population distribution information, thus improving the convergence performance of the algorithm. In addition, a Gaussian random walk strategy with medium solution is used to help the algorithm get rid of stagnation. The proposed algorithm is verified by simulation using the CEC2014 test suite. Simulation results show that the performance of HEGMPA is more competitive than other comparative algorithms, with significant improvements in terms of convergence accuracy and convergence speed.


2021 ◽  
Vol 12 (1) ◽  
pp. 49-66
Author(s):  
Yu Li ◽  
Yiran Zhao ◽  
Jingsen Liu

The sine cosine algorithm (SCA) is a recently proposed global swarm intelligence algorithm based on mathematical functions. This paper proposes a Levy flight sine cosine algorithm (LSCA) to solve optimization problems. In the update equation, the levy flight is introduced to improve optimization ability of SCA. By generating a random walk to update the position, this strategy can effectively search for particles to maintain better population diversity. LSCA has been tested 15 benchmark functions and real-world engineering design optimization problems. The result of simulation experiments with LSCA, SCA, PSO, FPA, and other improvement SCA show that the LSCA has stronger robustness and better convergence accuracy. The engineering problems are also shown that the effectiveness of the levy flight sine cosine algorithm to ensure the efficient results in real-world optimization problem.


2012 ◽  
Vol 616-618 ◽  
pp. 2064-2067
Author(s):  
Yong Gang Che ◽  
Chun Yu Xiao ◽  
Chao Hai Kang ◽  
Ying Ying Li ◽  
Li Ying Gong

To solve the primary problems in genetic algorithms, such as slow convergence speed, poor local searching capability and easy prematurity, the immune mechanism is introduced into the genetic algorithm, and thus population diversity is maintained better, and the phenomena of premature convergence and oscillation are reduced. In order to compensate the defects of immune genetic algorithm, the Hénon chaotic map, which is introduced on the above basis, makes the generated initial population uniformly distributed in the solution space, eventually, the defect of data redundancy is reduced and the quality of evolution is improved. The proposed chaotic immune genetic algorithm is used to optimize the complex functions, and there is an analysis compared with the genetic algorithm and the immune genetic algorithm, the feasibility and effectiveness of the proposed algorithm are proved from the perspective of simulation experiments.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2163
Author(s):  
Xingping Sun ◽  
Da Wang ◽  
Hongwei Kang ◽  
Yong Shen ◽  
Qingyi Chen

For most of differential evolution (DE) algorithm variants, premature convergence is still challenging. The main reason is that the exploration and exploitation are highly coupled in the existing works. To address this problem, we present a novel DE variant that can symmetrically decouple exploration and exploitation during the optimization process in this paper. In the algorithm, the whole population is divided into two symmetrical subpopulations by ascending order of fitness during each iteration; moreover, we divide the algorithm into two symmetrical stages according to the number of evaluations (FEs). On one hand, we introduce a mutation strategy, DE/current/1, which rarely appears in the literature. It can keep sufficient population diversity and fully explore the solution space, but its convergence speed gradually slows as iteration continues. To give full play to its advantages and avoid its disadvantages, we propose a heterogeneous two-stage double-subpopulation (HTSDS) mechanism. Four mutation strategies (including DE/current/1 and its modified version) with distinct search behaviors are assigned to superior and inferior subpopulations in two stages, which helps simultaneously and independently managing exploration and exploitation in different components. On the other hand, an adaptive two-stage partition (ATSP) strategy is proposed, which can adjust the stage partition parameter according to the complexity of the problem. Hence, a two-stage differential evolution algorithm with mutation strategy combination (TS-MSCDE) is proposed. Numerical experiments were conducted using CEC2017, CEC2020 and four real-world optimization problems from CEC2011. The results show that when computing resources are sufficient, the algorithm is competitive, especially for complex multimodal problems.


2001 ◽  
Vol 10 (01n02) ◽  
pp. 273-301 ◽  
Author(s):  
EUNICE E. SANTOS ◽  
EUGENE SANTOS

Hard discrete optimization problems using randomized methods such as genetic algorithms require large numbers of samples from the solution space. Each candidate sample/solution must be evaluated using the target fitness/energy function being optimized. Such fitness computations are a bottleneck in sampling methods such as genetic algorithms. We observe that the caching of partial results from these fitness computations can reduce this bottleneck. We provide a rigorous analysis of the run-times of GAs with and without caching. By representing fitness functions as classic Divide and Conquer algorithms, we provide a formal model to predict the efficiency of caching GAs vs. non-caching GAs. Finally, we explore the domain of protein folding with GAs and demonstrate that caching can significantly reduce expected run-times through both theoretical and extensive empirical analyses.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Sign in / Sign up

Export Citation Format

Share Document