scholarly journals Age Estimation from fMRI Data Using Recurrent Neural Network

2022 ◽  
Vol 12 (2) ◽  
pp. 749
Author(s):  
Yunfei Gao ◽  
Albert No

Finding a biomarker that indicates the subject’s age is one of the most important topics in biology. Several recent studies tried to extract a biomarker from brain imaging data including fMRI data. However, most of them focused on MRI data, which do not provide dynamics and lack attempts to apply recently proposed deep learning models. We propose a deep neural network model that estimates the age of a subject from fMRI images using a recurrent neural network (RNN), more precisely, a gated recurrent unit (GRU). However, applying neural networks is not trivial due to the high dimensional nature of fMRI data. In this work, we propose a novel preprocessing technique using the Automated Anatomical Labeling (AAL) atlas, which significantly reduces the input dimension. The proposed dimension reduction technique allows us to train our model with 640 training and validation samples from different projects under mean squared error (MSE). Finally, we obtain the correlation value of 0.905 between the predicted age and the actual age on 155 test samples. The proposed model estimates the age within the range of ±12 on most of the test samples. Our model is written in Python and is freely available for download.

Author(s):  
Shawni Dutta ◽  
Samir Kumar Bandyopadhyay

For enhancing the maximized profit from bank as well as customer perspective, term deposit can accelerate finance fields. This paper focuses on likelihood of term deposit subscription taken by the customers. Bank campaign efforts and customer details are influential while considering possibilities of taking term deposit subscription. An automated system is provided in this paper that approaches towards prediction of term deposit investment possibilities in advance. Neural network(NN) along with stratified 10-fold cross-validation methodology is proposed as predictive model which is later compared with other benchmark classifiers such as k-Nearest Neighbor (k-NN), Decision tree classifier (DT), and Multi-layer perceptron classifier (MLP). Experimental study concluded that proposed model provides significant prediction results over other baseline models with an accuracy of 88.32% and Mean Squared Error (MSE) of 0.1168.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jianlei Zhang ◽  
Yukun Zeng ◽  
Binil Starly

AbstractData-driven approaches for machine tool wear diagnosis and prognosis are gaining attention in the past few years. The goal of our study is to advance the adaptability, flexibility, prediction performance, and prediction horizon for online monitoring and prediction. This paper proposes the use of a recent deep learning method, based on Gated Recurrent Neural Network architecture, including Long Short Term Memory (LSTM), which try to captures long-term dependencies than regular Recurrent Neural Network method for modeling sequential data, and also the mechanism to realize the online diagnosis and prognosis and remaining useful life (RUL) prediction with indirect measurement collected during the manufacturing process. Existing models are usually tool-specific and can hardly be generalized to other scenarios such as for different tools or operating environments. Different from current methods, the proposed model requires no prior knowledge about the system and thus can be generalized to different scenarios and machine tools. With inherent memory units, the proposed model can also capture long-term dependencies while learning from sequential data such as those collected by condition monitoring sensors, which means it can be accommodated to machine tools with varying life and increase the prediction performance. To prove the validity of the proposed approach, we conducted multiple experiments on a milling machine cutting tool and applied the model for online diagnosis and RUL prediction. Without loss of generality, we incorporate a system transition function and system observation function into the neural net and trained it with signal data from a minimally intrusive vibration sensor. The experiment results showed that our LSTM-based model achieved the best overall accuracy among other methods, with a minimal Mean Square Error (MSE) for tool wear prediction and RUL prediction respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Binghao Yan ◽  
Guodong Han

The intrusion detection models (IDMs) based on machine learning play a vital role in the security protection of the network environment, and, by learning the characteristics of the network traffic, these IDMs can divide the network traffic into normal behavior or attack behavior automatically. However, existing IDMs cannot solve the imbalance of traffic distribution, while ignoring the temporal relationship within traffic, which result in the reduction of the detection performance of the IDM and increase the false alarm rate, especially for low-frequency attacks. So, in this paper, we propose a new combined IDM called LA-GRU based on a novel imbalanced learning method and gated recurrent unit (GRU) neural network. In the proposed model, a modified local adaptive synthetic minority oversampling technique (LA-SMOTE) algorithm is provided to handle imbalanced traffic, and then the GRU neural network based on deep learning theory is used to implement the anomaly detection of traffic. The experimental results evaluated on the NSL-KDD dataset confirm that, compared with the existing state-of-the-art IDMs, the proposed model not only obtains excellent overall detection performance with a low false alarm rate but also more effectively solves the learning problem of imbalanced traffic distribution.


2018 ◽  
Vol 7 (2) ◽  
pp. 1
Author(s):  
Paulo Marcelo Tasinaffo ◽  
Gildárcio Sousa Gonçalves ◽  
Adilson Marques da Cunha ◽  
Luiz Alberto Vieira Dias

This paper proposes to develop a model-based Monte Carlo method for computationally determining the best mean squared error of training for an artificial neural network with feedforward architecture. It is applied for a particular non-linear classification problem of input/output patterns in a computational environment with abundant data. The Monte Carlo method allows computationally checking that balanced data are much better than non-balanced ones for an artificial neural network to learn by means of supervised learning. The major contribution of this investigation is that, the proposed model can be tested by analogy, considering also the fraud detection problem in credit cards, where the amount of training patterns used are high.


2018 ◽  
Vol 4 (1) ◽  
pp. 24
Author(s):  
Imam Halimi ◽  
Wahyu Andhyka Kusuma

Investasi saham merupakan hal yang tidak asing didengar maupun dilakukan. Ada berbagai macam saham di Indonesia, salah satunya adalah Indeks Harga Saham Gabungan (IHSG) atau dalam bahasa inggris disebut Indonesia Composite Index, ICI, atau IDX Composite. IHSG merupakan parameter penting yang dipertimbangkan pada saat akan melakukan investasi mengingat IHSG adalah saham gabungan. Penelitian ini bertujuan memprediksi pergerakan IHSG dengan teknik data mining menggunakan algoritma neural network dan dibandingkan dengan algoritma linear regression, yang dapat dijadikan acuan investor saat akan melakukan investasi. Hasil dari penelitian ini berupa nilai Root Mean Squared Error (RMSE) serta label tambahan angka hasil prediksi yang didapatkan setelah dilakukan validasi menggunakan sliding windows validation dengan hasil paling baik yaitu pada pengujian yang menggunakan algoritma neural network yang menggunakan windowing yaitu sebesar 37,786 dan pada pengujian yang tidak menggunakan windowing sebesar 13,597 dan untuk pengujian algoritma linear regression yang menggunakan windowing yaitu sebesar 35,026 dan pengujian yang tidak menggunakan windowing sebesar 12,657. Setelah dilakukan pengujian T-Test menunjukan bahwa pengujian menggunakan neural network yang dibandingkan dengan linear regression memiliki hasil yang tidak signifikan dengan nilai T-Test untuk pengujian dengan windowing dan tanpa windowing hasilnya sama, yaitu sebesar 1,000.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Amila T. Peiris ◽  
Jeevani Jayasinghe ◽  
Upaka Rathnayake

Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying the wind power potential in a particular area due to climate changes. In this sense, forecasting both wind power generation and wind power potential is essential. This paper develops artificial neural network (ANN) models to forecast wind power generation in “Pawan Danawi”, a functioning wind farm in Sri Lanka. Wind speed, wind direction, and ambient temperature of the area were used as the independent variable matrices of the developed ANN models, while the generated wind power was used as the dependent variable. The models were tested with three training algorithms, namely, Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), and Bayesian Regularization (BR) training algorithms. In addition, the model was calibrated for five validation percentages (5% to 25% in 5% intervals) under each algorithm to identify the best training algorithm with the most suitable training and validation percentages. Mean squared error (MSE), coefficient of correlation (R), root mean squared error ratio (RSR), Nash number, and BIAS were used to evaluate the performance of the developed ANN models. Results revealed that all three training algorithms produce acceptable predictions for the power generation in the Pawan Danawi wind farm with R > 0.91, MSE < 0.22, and BIAS < 1. Among them, the LM training algorithm at 70% of training and 5% of validation percentages produces the best forecasting results. The developed models can be effectively used in the prediction of wind power at the Pawan Danawi wind farm. In addition, the models can be used with the projected climatic scenarios in predicting the future wind power harvest. Furthermore, the models can acceptably be used in similar environmental and climatic conditions to identify the wind power potential of the area.


2021 ◽  
Vol 11 (10) ◽  
pp. 2618-2625
Author(s):  
R. T. Subhalakshmi ◽  
S. Appavu Alias Balamurugan ◽  
S. Sasikala

In recent times, the COVID-19 epidemic turn out to be increased in an extreme manner, by the accessibility of an inadequate amount of rapid testing kits. Consequently, it is essential to develop the automated techniques for Covid-19 detection to recognize the existence of disease from the radiological images. The most ordinary symptoms of COVID-19 are sore throat, fever, and dry cough. Symptoms are able to progress to a rigorous type of pneumonia with serious impediment. As medical imaging is not recommended currently in Canada for crucial COVID-19 diagnosis, systems of computer-aided diagnosis might aid in early COVID-19 abnormalities detection and help out to observe the disease progression, reduce mortality rates potentially. In this approach, a deep learning based design for feature extraction and classification is employed for automatic COVID-19 diagnosis from computed tomography (CT) images. The proposed model operates on three main processes based pre-processing, feature extraction, and classification. The proposed design incorporates the fusion of deep features using GoogLe Net models. Finally, Multi-scale Recurrent Neural network (RNN) based classifier is applied for identifying and classifying the test CT images into distinct class labels. The experimental validation of the proposed model takes place using open-source COVID-CT dataset, which comprises a total of 760 CT images. The experimental outcome defined the superior performance with the maximum sensitivity, specificity, and accuracy.


2019 ◽  
Vol 32 (11) ◽  
pp. 6735-6744
Author(s):  
Nicoló Savioli ◽  
Enrico Grisan ◽  
Silvia Visentin ◽  
Erich Cosmi ◽  
Giovanni Montana ◽  
...  

AbstractThe automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. This article presents an attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional neural network (CNN) for the extraction of imaging features, a convolution gated recurrent unit (C-GRU) for exploiting the temporal redundancy of the signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. The solution is investigated with a cohort of 25 ultrasound sequences acquired during the third-trimester pregnancy check, and with 1000 synthetic sequences. In the extraction of features, it is shown that a shallow CNN outperforms two other deep CNNs with both the real and synthetic cohorts, suggesting that echocardiographic features are optimally captured by a reduced number of CNN layers. The proposed architecture, working with the shallow CNN, reaches an accuracy substantially superior to previously reported methods, providing an average reduction of the mean squared error from 0.31 (state-of-the-art) to 0.09 $$\mathrm{mm}^2$$mm2, and a relative error reduction from 8.1 to 5.3%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real-time clinical use.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Jinlong Hu ◽  
Yuezhen Kuang ◽  
Bin Liao ◽  
Lijie Cao ◽  
Shoubin Dong ◽  
...  

Deep learning models have been successfully applied to the analysis of various functional MRI data. Convolutional neural networks (CNN), a class of deep neural networks, have been found to excel at extracting local meaningful features based on their shared-weights architecture and space invariance characteristics. In this study, we propose M2D CNN, a novel multichannel 2D CNN model, to classify 3D fMRI data. The model uses sliced 2D fMRI data as input and integrates multichannel information learned from 2D CNN networks. We experimentally compared the proposed M2D CNN against several widely used models including SVM, 1D CNN, 2D CNN, 3D CNN, and 3D separable CNN with respect to their performance in classifying task-based fMRI data. We tested M2D CNN against six models as benchmarks to classify a large number of time-series whole-brain imaging data based on a motor task in the Human Connectome Project (HCP). The results of our experiments demonstrate the following: (i) convolution operations in the CNN models are advantageous for high-dimensional whole-brain imaging data classification, as all CNN models outperform SVM; (ii) 3D CNN models achieve higher accuracy than 2D CNN and 1D CNN model, but 3D CNN models are computationally costly as any extra dimension is added in the input; (iii) the M2D CNN model proposed in this study achieves the highest accuracy and alleviates data overfitting given its smaller number of parameters as compared with 3D CNN.


2012 ◽  
Vol 433-440 ◽  
pp. 4342-4347
Author(s):  
Zhen Hai Dou ◽  
Ya Jing Wang

In order to conquer the difficulty of building up the mathematics model of some complex system, model identification method based on neural network is put forward. By this method, according to actual sample datum, the complex model of crude oil heating furnace is identified at appropriate quantity of net layers and notes. The identification results show that output of model can basically consistent with the actual output and their mean squared error (MSE) almost is 0. Therefore, model identification method based on neural network is an effective method in complex system identification.


Sign in / Sign up

Export Citation Format

Share Document