scholarly journals Image Super-Resolution Algorithm Based on Dual-Channel Convolutional Neural Networks

2019 ◽  
Vol 9 (11) ◽  
pp. 2316 ◽  
Author(s):  
Yuantao Chen ◽  
Jin Wang ◽  
Xi Chen ◽  
Arun Kumar Sangaiah ◽  
Kai Yang ◽  
...  

For the image super-resolution method from a single channel, it is difficult to achieve both fast convergence and high-quality texture restoration. By mitigating the weaknesses of existing methods, the present paper proposes an image super-resolution algorithm based on dual-channel convolutional neural networks (DCCNN). The novel structure of the network model was divided into a deep channel and a shallow channel. The deep channel was used to extract the detailed texture information from the original image, while the shallow channel was mainly used to recover the overall outline of the original image. Firstly, the residual block was adjusted in the feature extraction stage, and the nonlinear mapping ability of the network was enhanced. The feature mapping dimension was reduced, and the effective features of the image were obtained. In the up-sampling stage, the parameters of the deconvolutional kernel were adjusted, and high-frequency signal loss was decreased. The high-resolution feature space could be rebuilt recursively using long-term and short-term memory blocks during the reconstruction stage, further enhancing the recovery of texture information. Secondly, the convolutional kernel was adjusted in the shallow channel to reduce the parameters, ensuring that the overall outline of the image was restored and that the network converged rapidly. Finally, the dual-channel loss function was jointly optimized to enhance the feature-fitting ability in order to obtain the final high-resolution image output. Using the improved algorithm, the network converged more rapidly, the image edge and texture reconstruction effect were obviously improved, and the Peak Signal-to-Noise Ratio (PSNR) and structural similarity were also superior to those of other solutions.

2021 ◽  
Vol 11 (20) ◽  
pp. 9442
Author(s):  
Yuantao Chen ◽  
Jin Wang ◽  
Xi Chen ◽  
Arun Kumar Sangaiah ◽  
Kai Yang ◽  
...  

The published article Image Super-Resolution Algorithm Based on Dual-Channel Convolutional Neural Networks [...]


2017 ◽  
Vol 6 (4) ◽  
pp. 15
Author(s):  
JANARDHAN CHIDADALA ◽  
RAMANAIAH K.V. ◽  
BABULU K ◽  
◽  
◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 22-29
Author(s):  
Kajol Singh ◽  
Manish Saxena

The images captured through a camera usually belong to over or under exposed conditions. The reason may be inappropriate lighting conditions or camera resolution. Hence, it is of utmost importance to have a few enhancement techniques that could make these artefacts look better. Hence, the primary objective pertaining to the adjustment and enhancement techniques is to enhance the characteristics of an image. The initial numeric values related to an image get distorted when an image is enhanced. Therefore, enhancement techniques should be designed in such a way that the image quality isn’t compromised. This research work is focused on proposed a network design for deep convolution neural networks for application of super resolution techniques. To improve the complexity of existing techniques this work is intended towards network designs, different filter size and CNN architecture. The CNN model is most effective model for detection and segmentation in image. This model will improve the efficiency of medical image reconstruction from LR to HR. The proposed model showed its efficiency not only PET medical images but also on retinal database and achieved advance results as compared to existing works.


Sign in / Sign up

Export Citation Format

Share Document