scholarly journals SWAT-Based Runoff Simulation and Runoff Responses to Climate Change in the Headwaters of the Yellow River, China

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 509
Author(s):  
Jingwen Wu ◽  
Haiyan Zheng ◽  
Yang Xi

Runoff in snowy alpine regions is sensitive to climate change in the context of global warming. Exploring the impact of climate change on the runoff in these regions is critical to understand the dynamics of the water cycle and for the improvement of water resources management. In this study, we analyzed the long-term variations in annual runoff in the headwaters region of the Yellow River (HRYR) (a typical snowy mountain region) during the period of 1956–2012. The Soil and Water Assessment Tool (SWAT) with different elevation bands was employed to assess the performance of monthly runoff simulations, and then to evaluate the impacts of climate change on runoff. The results show that the observed runoff for the hydrological stations at lower relative elevations (i.e., Maqu and Tangnaihai stations) had a downward trend, with rates of 1.91 and 1.55 mm/10 years, while a slight upward trend with a rate of 0.26 mm/10 years was observed for the hydrological station at higher elevation (i.e., Huangheyan station). We also found that the inclusion of five elevation bands could lead to more accurate runoff estimates as compared to simulation without elevation bands at monthly time steps. In addition, the dominant cause of the runoff decline across the whole HRYR was precipitation (which explained 64.2% of the decrease), rather than temperature (25.93%).

Author(s):  
Dongying Yi ◽  
Yue Xu ◽  
Nan Wang ◽  
Xiaoyi Ma

The primary approach to realizing long-term runoff prediction involves combining a hydrological model with general circulation model. Previous studies on the Source area of the Yellow River were all based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) data sets with defects in physical mechanisms. In this paper, the Beijing Climate Center Climate System Model (BCC-CSM2-MR) of CMIP6, which proved to perform well in arid and semi-arid regions, will be used to drive the Soil & Water Assessment Tool (SWAT) model and evaluate its applicability in runoff simulation at Tang Nahai Hydrological Station from 2011 to 2019. The occurrence of the extreme value of runoff, its change trend, and the year of abrupt change of runoff in the four Shared Socio-economic Pathway (SSP) scenarios (SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5) during 2021-2100 were analyzed. The results show that: (1) the runoff simulation evaluation index of SWAT driven by BCC-CSM2-MR in the research area from 2011 to 2019 is excellent, and the runoff simulation in the future is reliable and effective. (2) only the average annual runoff in scenario 5-8.5 (708.5m /s) from 2021 to 2100 was significantly higher than that in 2011-2019. Other scenarios are close to or less than the annual runoff observed. Most importantly, the maximum and minimum annual runoff values under the four scenarios all occurred during 2060-2080, so the attribution analysis of runoff extremum during 2060-2080 is worth further study. (3) it is necessary to evaluate whether the existing reservoirs and hydropower stations in the Yellow River basin can reasonably regulate and utilize the annual runoff under scenario 5-8.5.


Author(s):  
Kebi Yang ◽  
Ting Chen ◽  
Tianqi Ao ◽  
Xu Zhang ◽  
Li Zhou ◽  
...  

Abstract Climate change affects water cycle in different regions. The response of annual runoff and seasonal distribution to climate change in the upper reaches of the Minjiang River during 2021–2050 was studied by coupling the Statistical Downscaling Model (SDSM) and the Soil and Water Assessment Tool (SWAT). This model was driven by the second-generation Canadian Earth System Model (CanESM2) under RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that the runoff in the upper reaches of the Minjiang River has a unique response to climate change. The maximum and minimum temperatures will increase with the increase in emissions, especially in December–January. The daily precipitation shows an upward trend, especially in July–August in the RCP4.5 scenario. The annual runoff shows an upward trend with the increase in emissions. Compared with the current increase of 13–26%, the most prominent period is November–April. Because the study area covers high mountains and gorge landforms, the altitude difference is great, and the influence of evapotranspiration and snow melting processes is more prominent, causing the monthly runoff to decrease in June–July with an increase in precipitation. From April to May, precipitation decreased while runoff increased.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 72
Author(s):  
Xinru Wang ◽  
Huijuan Cui

Due to both anthropogenic and climate change impacts, precipitation and runoff in the Yellow River basin have decreased in the past 50 years, leading to more pressure in sustaining human beings and ecosystem needs. It is essential to evaluate the flow condition in the Yellow River basin and see whether it may satisfy its ecological flow in the future. Therefore, this study applied an entropy-based method to calculate the flow duration curves from both observed and simulated data to evaluate the impact of climate change on ecological flow in the Yellow River basin. The simulated FDCs from H08 and DBH models show good agreement with each other and fit observation well. Results show that the decadal FDC at each station is generally predicted to be higher or stay in the higher range under both RCP 2.6 and 8.5 scenarios, suggesting an increase in water amount in the future. It is found that the high flows increase much faster than the low flows, resulting in larger slopes than the references ones, which is due to the larger entropy and M values in the future. At most of the stations, the future values of Q95 and Q90 will safely exceed the threshold. It is found that at the Lanzhou, Wubao, Longmen, and Huayuankou stations, there will be no or little threat to future ecological flow. Still, at the Toudaoguai and Sanmanxia stations, the ecological requirement is not always satisfied. The water stress at the Tangnaihai station from the upper stream of the Yellow River may be threatened in the future.


Author(s):  
X. Yao ◽  
X. Cui ◽  
J. Yu ◽  
W. Sun

Abstract. According to the IPCC Fourth Assessment, the temperature and evapotranspiration will increase in the future. As a sensitive region to climate change, hydrological process in the middle reaches of the Yellow River will be significantly affected by climate change. In this study, water resources change in the future for a typical basin there: Lushi basin is assessed using the Soil and Water Assessment Tool (SWAT) hydrological model. Downscaled ensemble output from sixteen General Circulation Models (GCMs) for the A1B emission scenario in the 2050s was input to SWAT as the regional climate change scenario. The prediction shows that ET of this basin increases in winter and spring, and decreases in summer and autumn, and the streamflow increases throughout the year. The increased streamflow will probably improve the water demand guarantee and be conducive to crop growth in winter and spring, and may improve the flood risk in summer.


10.29007/cxp9 ◽  
2018 ◽  
Author(s):  
Yongnan Zhu ◽  
Zhaohui Lin ◽  
Yong Zhao ◽  
Lizhen Wang

This study analyzed the combined effects of climate change and land use changes in the Yellow River Basin over the last 45 years. Based on the China Land-use Data for Hundred Years dataset (CLDH), East Asia daily precipitation data, and 6-h NCEP/NCAR reanalysis data, the Coupled Land Surface and Hydrology Model System (CLHMS) was applied to simulate the water cycle processes in the Yellow River under changing conditions from 1962 to 2006. During the study period, the evaporation, infiltration, and surface runoff in the Yellow River Basin all showed a decreasing trend. Comparative tests indicated that climate change was a major factor impacting water cycle variations.


2010 ◽  
Vol 62 (4) ◽  
pp. 783-791 ◽  
Author(s):  
Jing Fan ◽  
Fei Tian ◽  
Yonghui Yang ◽  
Shumin Han ◽  
Guoyu Qiu

Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.


Author(s):  
Deng Wang ◽  
Shengqi Jian ◽  
Zening Wu ◽  
Zhaoxi Zhang ◽  
Caihong Hu

Abstract. The runoff of the Fenhe River flowed into the Yellow River (RRY) is reducing significantly due to the influence of climate change and human activities. It is generating bad situation of shortage of water resources and led to the deterioration of ecological environment of Shanxi Province. At the same time, the reduction in RRY causes the runoff reduction in Yellow River and exacerbated the water resources shortage of the middle area of the Yellow River. Therefore, it is important to alleviate water shortage and develop the soil and water conservation measurements and regional water policy by analyzing the influence of human activities and climate change on the RRY. The existing study quantified the reduction in amount of RRY which caused by human activities and climate change using statistical methods and watershed hydrological model. The main results of the study were as follow: Using hydrological variation diagnosis system, the variation characteristics of long time series of measured annual runoff were analyzed in Hejin station that is the Fenhe River control station. The results showed that the runoff of Fenhe River run into Yellow River declined year by year, in 1971, fell the most obviously. The impact of LUCC on runoff was calculated using the method of area ratio in the Fenhe River basin. Human activities were major factor in the reduction of RRY than the climate change, contributed 83.09 % of the total reduction in RRY, Groundwater exploitation gave the greatest contribution to the decrease in RRY in the scope of several kinds of human activity (30.09 %), followed by coal mining (26.03 %), climate changed contributed 19.17 % of the total reduction of RRY, and the decrease of precipitation contributed 20.81 %. But the variation of air temperature and wind speed would result in the increase of the amount of RRY.


2018 ◽  
Author(s):  
Pan Wu ◽  
Sihai Liang ◽  
Xu-Sheng Wang ◽  
Yuqing Feng ◽  
Jeffrey M. McKenzie

Abstract. The source region of the Yellow River (SRYR) provides 35 % of the rivers annual discharge but is very sensitive to the climate change. The change in discharge from the SRYR has been attributed to both climatic and anthropogenic forces, and previous estimates of the impact of human activities on the change in discharge have been higher than 50 % of the total change. Considering the very low population density and limited land use change, this result is potentially inconsistent. Our study modifies the traditional Budyko separating approach to identify and quantify the climatic causes in discharge changes. Application of this new approach to the SRYR now highlights the role of the degrading permafrost, based on long-term observation data of the maximum frozen depth (MFD). Our results show that over the past half-century, the change in discharge in the SRYR was primarily controlled by climate change rather than local human activities. Increasing air temperature is generally a negative force on discharge whereas it also causes permafrost to degrade – a positive factor on discharge generation. Such conflicting effects enhance the uncertainty in assessments of the hydrological response to climate change in the SRYR.


Sign in / Sign up

Export Citation Format

Share Document