scholarly journals Characterization of the Leucocyte Immunoglobulin-like Receptor B4 (Lilrb4) Expression in Microglia

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1300
Author(s):  
Felix Kretzschmar ◽  
Robin Piecha ◽  
Jannik Jahn ◽  
Phani Sankar Potru ◽  
Björn Spittau

As resident innate immune cells of the CNS, microglia play important essential roles during physiological and pathological situations. Recent reports have described the expression of Lilrb4 in disease-associated and aged microglia. Here, we characterized the expression of Lilrb4 in microglia in vitro and in vivo in comparison with bone marrow-derived monocytes and peritoneal macrophages in mice. Using BV2 cells, primary microglia cultures as well as ex vivo isolated microglia and myeloid cells in combination with qPCR and flow cytometry, we were able to provide a comprehensive characterization of Lilrb4 expression in distinct mouse myeloid cells. Whereas microglia in vivo display low expression of Lilrb4, primary microglia cultures present high levels of surface LILRB4. Among the analyzed peripheral myeloid cells, peritoneal macrophages showed the highest expression levels of Lilrb4. Moreover, LPS treatment and inhibition of microglial TGFβ signaling resulted in significant increases of LILRB4 cell surface levels. Taken together, our data indicate that LILRB4 is a reliable surface marker for activated microglia and further demonstrate that microglial TGFβ signaling is involved in the regulation of Lilrb4 expression during LPS-induced microglia activation.

2017 ◽  
Vol 45 (04) ◽  
pp. 847-861 ◽  
Author(s):  
Chia-Yang Li ◽  
Katsuhiko Suzuki ◽  
Yung-Li Hung ◽  
Meng-Syuan Yang ◽  
Chung-Ping Yu ◽  
...  

Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.


2015 ◽  
Vol 1 (1) ◽  
pp. 236-239 ◽  
Author(s):  
Sandra Stein ◽  
Christian Simroth-Loch ◽  
Sönke Langner ◽  
Stefan Hadlich ◽  
Oliver Stachs ◽  
...  

AbstractThe in vitro and in vivo characterization of intravitreal injections plays an important role in developing innovative therapy approaches. Using the established vitreous model (VM) and eye movement system (EyeMoS) the distribution of contrast agents with different molecular weight was studied in vitro. The impact of the simulated age-related vitreal liquefaction (VL) on drug distribution in VM was examined either with injection through the gel phase or through the liquid phase. For comparison the distribution was studied ex vivo in the porcine vitreous. The studies were performed in a magnetic resonance (MR) scanner. As expected, with increasing molecular weight the diffusion velocity and the visual distribution of the injected substances decreased. Similar drug distribution was observed in VM and in porcine eye. VL causes enhanced convective flow and faster distribution in VM. Confirming the importance of the injection technique in progress of VL, injection through gelatinous phase caused faster distribution into peripheral regions of the VM than following injection through liquefied phase. VM and MR scanner in combination present a new approach for the in vitro characterization of drug release and distribution of intravitreal dosage forms.


2016 ◽  
Vol 511 (2) ◽  
pp. 719-727 ◽  
Author(s):  
Cristina Cañadas ◽  
Helen Alvarado ◽  
Ana C. Calpena ◽  
Amélia M. Silva ◽  
Eliana B. Souto ◽  
...  

2018 ◽  
Vol 115 (10) ◽  
pp. E2366-E2375 ◽  
Author(s):  
David Langlais ◽  
Regina Cencic ◽  
Neda Moradin ◽  
James M. Kennedy ◽  
Kodjo Ayi ◽  
...  

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sebastián Ezequiel Pérez ◽  
Yamila Gándola ◽  
Adriana Mónica Carlucci ◽  
Lorena González ◽  
Daniel Turyn ◽  
...  

The aim of the present work was to take advantage of lecithin’s biocompatibility along with its physicochemical properties for the preparation of lecithin-based nanocarriers for small interfering RNA (siRNA) delivery. Water lecithin dispersions were prepared in different conditions, loaded with siRNA at different N/P ratios, and evaluated for loading capacity. The most appropriate ones were then assayed for cytotoxicity and characterized in terms of particle size distribution, zeta potential, and morphology. Results demonstrated that formulations prepared at pH 5.0 and 7.0 were able to load siRNA at broad N/P ratios, and cellular uptake assays showed an efficient delivery of oligos in MCF-7 human breast cancer cells; fluorescent-labeled dsRNA mainly located next to its target, near the nucleus of the cells. No signs of toxicity were observed for broad compositions of lecithin. The physicochemical characterization of the siRNA-loaded dispersions exhibited particles of nanometric sizes and pH-dependant shapes, which make them suitable for ex vivo and in vivo further evaluation.


1997 ◽  
Vol 56 (1) ◽  
pp. 41-49 ◽  
Author(s):  
J. Whelan ◽  
K.A. Golemboski ◽  
K.S. Broughton ◽  
J.E. Kinsella ◽  
R.R. Dietert

Blood ◽  
2011 ◽  
Vol 118 (8) ◽  
pp. 2105-2115 ◽  
Author(s):  
Elisa Ciraci ◽  
Silvia Della Bella ◽  
Ombretta Salvucci ◽  
Cristina Rofani ◽  
Marta Segarra ◽  
...  

Abstract A precise identification of adult human hemangioblast is still lacking. To identify circulating precursors having the developmental potential of the hemangioblast, we established a new ex vivo long-term culture model supporting the differentiation of both hematopoietic and endothelial cell lineages. We identified from peripheral blood a population lacking the expression of CD34, lineage markers, CD45 and CD133 (CD34−Lin−CD45−CD133− cells), endowed with the ability to differentiate after a 6-week culture into both hematopoietic and endothelial lineages. The bilineage potential of CD34−Lin−CD45−CD133− cells was determined at the single-cell level in vitro and was confirmed by transplantation into NOD/SCID mice. In vivo, CD34−Lin−CD45−CD133− cells showed the ability to reconstitute hematopoietic tissue and to generate functional endothelial cells that contribute to new vessel formation during tumor angiogenesis. Molecular characterization of CD34−Lin−CD45−CD133− cells unveiled a stem cell profile compatible with both hematopoietic and endothelial potentials, characterized by the expression of c-Kit and CXCR4 as well as EphB4, EphB2, and ephrinB2. Further molecular and functional characterization of CD34−Lin−CD45−CD133− cells will help dissect their physiologic role in blood and blood vessel maintenance and repair in adult life.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Elena Ufimtseva

The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccinein vitrohas demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infectedin vitrohad increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infectedin vitroor in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells bothin vivoand inex vivoculture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infectionin vitro, when no expression of the activation-related molecules was detected in these cells.


2007 ◽  
Vol 292 (6) ◽  
pp. E1917-E1921 ◽  
Author(s):  
Katie Beth Williams ◽  
Hector F. DeLuca

A new, completely in vivo method of measuring the rate of intestinal phosphate absorption has been developed. As expected from previous in vitro and ex vivo measurements, intestinal phosphate absorption is potently and rapidly stimulated by 1,25-dihydroxyvitamin D3. The response is saturated with as little as 11.3 ng of 1,25-dihydroxyvitamin D3 per day, consistent with a genomic mechanism. The effect of 1,25-dihydroxyvitamin D3 disappears when the dosing solution of phosphate is at 2 M, suggesting that 1,25-dihydroxyvitamin D3 stimulates active transport of phosphate but not diffusion of phosphate. Finally, unlike findings resulting from in vitro or ex vivo experiments, no evidence in vivo was obtained that phosphate absorption requires sodium or is inhibited by potassium.


Sign in / Sign up

Export Citation Format

Share Document