scholarly journals The Roles of S100A4 and the EGF/EGFR Signaling Axis in Pulmonary Hypertension with Right Ventricular Hypertrophy

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Maria Laggner ◽  
Philipp Hacker ◽  
Felicitas Oberndorfer ◽  
Jonas Bauer ◽  
Thomas Raunegger ◽  
...  

Pulmonary hypertension (PH) is characterized by increased pulmonary arterial pressure caused by the accumulation of mesenchymal-like cells in the pulmonary vasculature. PH can lead to right ventricular hypertrophy (RVH) and, ultimately, heart failure and death. In PH etiology, endothelial-to-mesenchymal transition (EndMT) has emerged as a critical process governing the conversion of endothelial cells into mesenchymal cells, and S100A4, EGF, and EGFR are implicated in EndMT. However, a potential role of S100A4, EGF, and EGFR in PH has to date not been elucidated. We therefore quantified S100A4, EGF, and EGFR in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH). To determine specificity for unilateral heart disease, the EndMT biomarker signature was further compared between PH patients presenting with RVH and patients suffering from aortic valve stenosis (AVS) with left ventricular hypertrophy. Reduced S100A4 concentrations were found in CTEPH and iPAH patients with RVH. Systemic EGF was increased in CTEPH but not in iPAH, while AVS patients displayed slightly diminished EGF levels. EGFR was downregulated in all patient groups when compared to healthy controls. Longitudinal data analysis revealed no effect of surgical therapies on EndMT markers. Pulmonary thrombo-endarterectomized samples were devoid of S100A4, while S100A4 tissue expression positively correlated with higher grades of Heath–Edwards histopathological lesions of iPAH-derived lung tissue. Histologically, EGFR was not detectable in CTEPH lungs or in iPAH lesions. Together, our data suggest an intricate role for S100A4 and EGF/EGFR in PH with right heart pathology.

2003 ◽  
Vol 13 (4) ◽  
pp. 384-386 ◽  
Author(s):  
Munesh Tomar ◽  
Sitaraman Radhakrishnan ◽  
Savitri Shrivastava

We report two instances of transient isolated right-sided myocardial hypertrophy in patients with an intact ventricular septum, normal thickness of the posterior wall of the left ventricle, and normal ventricular function, diagnosed by echocardiography on the third day of life. The two neonates, born at 36 and 38 weeks gestation respectively, had perinatal distress. Both were diagnosed as having isolated right ventricular hypertrophy with mild pulmonary hypertension, which disappeared in both cases within 8 weeks without any specific therapy. Though the cause of the ventricular hypertrophy remains unclear, we believe that it is the consequence of remodeling of pulmonary vasculature secondary to acute perinatal distress, resulting in persistent pulmonary hypertension and producing pressure overload on the right ventricle, and hence right ventricular hypertrophy. The finding of early and transient right ventricular hypertrophy, with normal left-sided structures and normal ventricular function, has thus far failed to gain attention in the paediatric cardiologic literature.


1984 ◽  
Vol 56 (2) ◽  
pp. 388-396 ◽  
Author(s):  
N. S. Hill ◽  
R. F. O'Brien ◽  
S. Rounds

Acute lung injury due to alpha-naphthylthiourea (ANTU) is associated with increased permeability edema, transient pulmonary hypertension, and increased vascular reactivity. We sought to determine whether repeated administration of ANTU caused right ventricular hypertrophy. Rats were injected weekly for 4 wk with ANTU or an equivalent volume of the vehicle Tween 80. Rats injected repeatedly with ANTU in doses of 5–10 mg/kg body wt had increased ratios of right ventricular to left ventricular plus septal weights. The right ventricular hypertrophy in ANTU-treated rats was associated with right ventricular systolic hypertension. Repeated injections of ANTU also caused transient pulmonary edema after each dose, as evidenced by increased wet-to-dry lung weight ratios after 4 h, which returned to normal by 24 h. Lungs isolated from ANTU-injected rats had greater pressor responses to hypoxia and to angiotensin II than lungs from Tween 80-injected rats. Pressure-flow curves of isolated lungs, arterial blood gases, and hematocrits were similar in rats treated repetitively with ANTU or Tween alone. Lung histology was also similar in ANTU and control lungs, as were measurements of arterial medial thickness and ratios of numbers of arteries/100 alveoli, indicating that substantial vascular remodeling had not occurred. Thus, four weekly ANTU injections in rats caused right ventricular hypertrophy, probably due to pulmonary hypertension. We speculate that the pulmonary hypertension was due, at least in part, to sustained vasoconstriction, which somehow resulted from repeated acute lung injury.


Endocrinology ◽  
2007 ◽  
Vol 149 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Daryl O. Schwenke ◽  
Takeshi Tokudome ◽  
Mikiyasu Shirai ◽  
Hiroshi Hosoda ◽  
Takeshi Horio ◽  
...  

Chronic exposure to hypoxia, a common adverse consequence of most pulmonary disorders, can lead to a sustained increase in pulmonary arterial pressure (PAP), right ventricular hypertrophy, and is, therefore, closely associated with heart failure and increased mortality. Ghrelin, originally identified as an endogenous GH secretagogue, has recently been shown to possess potent vasodilator properties, likely involving modulation of the vascular endothelium and its associated vasoactive peptides. In this study we hypothesized that ghrelin would impede the pathogenesis of pulmonary arterial hypertension during chronic hypoxia (CH). PAP was continuously measured using radiotelemetry, in conscious male Sprague Dawley rats, in normoxia and during 2-wk CH (10% O2). During this hypoxic period, rats received a daily sc injection of either saline or ghrelin (150 μg/kg). Subsequently, heart and lung samples were collected for morphological, histological, and molecular analyses. CH significantly elevated PAP in saline-treated rats, increased wall thickness of peripheral pulmonary arteries, and, consequently, induced right ventricular hypertrophy. In these rats, CH also led to the overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA within the lung. Exogenous ghrelin administration attenuated the CH-induced overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA. Consequently, ghrelin significantly attenuated the development of pulmonary arterial hypertension, pulmonary vascular remodeling, and right ventricular hypertrophy. These results demonstrate the therapeutic benefits of ghrelin for impeding the pathogenesis of pulmonary hypertension and right ventricular hypertrophy, particularly in subjects prone to CH (e.g. pulmonary disorders).


2021 ◽  
pp. 1-15
Author(s):  
Lars K. Markvardsen ◽  
Lene D. Sønderskov ◽  
Christine Wandall-Frostholm ◽  
Estéfano Pinilla ◽  
Judit Prat-Duran ◽  
...  

<b><i>Introduction:</i></b> Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. <b><i>Methods:</i></b> Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. <b><i>Results:</i></b> Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. <b><i>Discussion/Conclusions:</i></b> Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.


1999 ◽  
Vol 277 (2) ◽  
pp. L225-L232 ◽  
Author(s):  
Norihisa Hanasato ◽  
Masahiko Oka ◽  
Masashi Muramatsu ◽  
Mayu Nishino ◽  
Hideyuki Adachi ◽  
...  

The purpose of this study was to determine whether E-4010, a newly synthesized potent and selective orally active phosphodiesterase (PDE) 5 inhibitor, would prevent the development of chronic hypoxia-induced pulmonary hypertension in rats. In conscious, pulmonary hypertensive rats, a single oral administration of E-4010 (1.0 mg/kg) caused an acute, long-lasting reduction in mean pulmonary arterial pressure (PAP), with no significant effects on systemic arterial pressure, cardiac output, and heart rate. In rats that received food containing 0.01 or 0.1% E-4010 during the 3-wk exposure to hypoxia, mean PAP was significantly decreased (mean PAP 24.0 ± 0.9, 16.2 ± 0.8, and 12.8 ± 0.5 mmHg in rats treated with 0, 0.01, and 0.1% E-4010-containing food, respectively), whereas mean systemic arterial pressure was unchanged and cardiac output was slightly increased compared with chronically hypoxic control rats. Right ventricular hypertrophy, medial wall thickness in pulmonary arteries corresponding to the respiratory and terminal bronchioles, and the degree of muscularization of more distal arteries were less severe in E-4010-treated rats. Long-term treatment with E-4010 caused an increase in cGMP levels in lung tissue and plasma but not in aortic tissue and no significant change in cAMP levels in either lung, aorta, or plasma. These results suggest that long-term oral treatment with E-4010 reduced the increase in PAP, right ventricular hypertrophy, and pulmonary arterial remodeling induced by exposure to chronic hypoxia, probably through increasing cGMP levels in the pulmonary vascular smooth muscle.


1991 ◽  
Vol 70 (2) ◽  
pp. 561-566 ◽  
Author(s):  
Y. L. Lai ◽  
J. W. Olson ◽  
M. N. Gillespie

Rats with established monocrotaline (MCT)-induced pulmonary hypertension also exhibit a profound increase in lung resistance (RL) and a decrease in lung compliance. Because airway/lung dysfunction could precede and influence the evolution of MCT-induced pulmonary vascular disease, it is important to establish the temporal relationship between development of pulmonary hypertension and altered ventilatory function in MCT-treated rats. To resolve this issue, we segregated 47 young Sprague-Dawley rats into four groups: control (n = 13), MCT1 (n = 9), MCT2 (n = 11), and MCT3 (n = 14). Each MCT rat received a single subcutaneous injection of MCT (60 mg/kg) 1 MCT1), 2 (MCT2), or 3 (MCT3) wk before the functional study. At 1 wk after MCT, significant increases in RL and alveolar wall thickness were observed, as was a significant decrease in carbon monoxide diffusing capacity (DLCO). Medial thickness of pulmonary arteries (50-100 microns OD) and right ventricular hypertrophy were not observed until 2 and 3 wk post-MCT, respectively. Coincident with the right ventricular hypertrophy at 3 wk post-MCT were decreased DLCO and increased alveolar wall thickness and lung dry weight. Pressure-volume curves of air-filled and saline-filled lungs showed marked rightward shifts during the 1st and 2nd wk after MCT administration and then decreased at the 3rd wk. These data suggest that MCT-induced alterations in airway/lung function preceded those of pulmonary vasculature and, therefore, implicate airway/lung dysfunctions as potentially contributing to the later development of pulmonary vascular abnormalities.


Sign in / Sign up

Export Citation Format

Share Document