scholarly journals Galectins in Intra- and Extracellular Vesicles

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1232
Author(s):  
Sebastian Bänfer ◽  
Ralf Jacob

Carbohydrate-binding galectins are expressed in various tissues of multicellular organisms. They are involved in autophagy, cell migration, immune response, inflammation, intracellular transport, and signaling. In recent years, novel roles of galectin-interaction with membrane components have been characterized, which lead to the formation of vesicles with diverse functions. These vesicles are part of intracellular transport pathways, belong to the cellular degradation machinery, or can be released for cell-to-cell communication. Several characteristics of galectins in the lumen or at the membrane of newly formed vesicular structures are discussed in this review and illustrate the need to fully elucidate their contributions at the molecular and structural level.

2019 ◽  
Vol 6 (1) ◽  
pp. 13 ◽  
Author(s):  
Diego Gonçalves ◽  
Marina Ferreira ◽  
Allan Guimarães

Extracellular vesicles (EVs) are membranous compartments of distinct cellular origin and biogenesis, displaying different sizes and include exosomes, microvesicles, and apoptotic bodies. The EVs have been described in almost every living organism, from simple unicellular to higher evolutionary scale multicellular organisms, such as mammals. Several functions have been attributed to these structures, including roles in energy acquisition, cell-to-cell communication, gene expression modulation and pathogenesis. In this review, we described several aspects of the recently characterized EVs of the protozoa Acanthamoeba castellanii, a free-living amoeba (FLA) of emerging epidemiological importance, and compare their features to other parasites’ EVs. These A. castellanii EVs are comprised of small microvesicles and exosomes and carry a wide range of molecules involved in many biological processes like cell signaling, carbohydrate metabolism and proteolytic activity, such as kinases, glucanases, and proteases, respectively. Several biomedical applications of these EVs have been proposed lately, including their use in vaccination, biofuel production, and the pharmaceutical industry, such as platforms for drug delivery.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 105
Author(s):  
Simona Bernardi ◽  
Mirko Farina

Extracellular vesicles (exosomes, in particular) are essential in multicellular organisms because they mediate cell-to-cell communication via the transfer of secreted molecules. They are able to shuttle different cargo, from nucleic acids to proteins. The role of exosomes has been widely investigated in solid tumors, which gave us surprising results about their potential involvement in pathogenesis and created an opening for liquid biopsies. Less is known about exosomes in oncohematology, particularly concerning the malignancies deriving from myeloid lineage. In this review, we aim to present an overview of immunomodulation and the microenvironment alteration mediated by exosomes released by malicious myeloid cells. Afterwards, we review the studies reporting the use of exosomes as disease biomarkers and their influence in response to treatment, together with the recent experiences that have focused on the use of exosomes as therapeutic tools. The further development of new technologies and the increased knowledge of biological (exosomes) and clinical (myeloid neoplasia) aspects are expected to change the future approaches to these malignancies.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Wendy Fitzgerald ◽  
Michael L. Freeman ◽  
Michael M. Lederman ◽  
Elena Vasilieva ◽  
Roberto Romero ◽  
...  

Abstract Cytokines are soluble factors that mediate cell–cell communications in multicellular organisms. Recently, another system of cell–cell communication was discovered, which is mediated by extracellular vesicles (EVs). Here, we demonstrate that these two systems are not strictly separated, as many cytokines in vitro, ex vivo, and in vivo are released in EV-encapsulated forms and are capable of eliciting biological effects upon contact with sensitive cells. Association with EVs is not necessarily a property of a particular cytokine but rather of a biological system and can be changed upon system activation. EV-encapsulated cytokines were not detected by standard cytokine assays. Deciphering the regulatory mechanisms of EV-encapsulation will lead to a better understanding of cell–cell communications in health and disease.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 2874-2884 ◽  
Author(s):  
Nicole Walters ◽  
Luong T. H. Nguyen ◽  
Jingjing Zhang ◽  
Ajay Shankaran ◽  
Eduardo Reátegui

Neutrophil swarming is a complex cell to cell communication process that helps our bodies to combat infections and promote healing damaged tissues. During swarming, neutrophils release extracellular vesicles that help coordinated cell migration.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Azela Glady ◽  
Arno Vandebroek ◽  
Masato Yasui

Abstract Background Wound healing is a complex biological process and complete skin regeneration is still a critical challenge. Extracellular vesicles (EVs) play essential roles in cell communication and cell regeneration, and recent studies have suggested that EVs may contribute to wound healing, though the molecular mechanisms behind this contribution remain unclear. For these reasons, we decided to use EVs isolated from human keratinocytes (HaCaT) in vitro to determine the potential mechanism of action of EV-derived wound healing. Method Scratch assays were used to determine cell migration and proliferation. Scratched cells were exposed to EVs in multiple conditions to determine how they affect wound healing. Statistical analysis between groups was carried out to using Student’s two-sided t test. A p value of <  0.05 was considered statistically significant. Result We found that proteomic analysis of purified EVs shows enrichment of proteins associated with cell communication and signal transduction, such as MAPK pathways, and keratinocyte and fibroblast cultures exposed to EVs had higher levels of proliferation, migration, and ERK1/2 and P38 activation. Moreover, we found that treatment with specific ERK1/2 and P38 signaling inhibitors PD98059 and SB239063 impaired EV-mediated cell migration, which suggests that ERK1/2 and P38 signaling is essential for EV-induced wound healing. Conclusion HaCaT cell-derived EVs accelerate the migration and proliferation of human keratinocytes and fibroblasts and may promote wound healing via the activation of MAPKinase pathways. These findings may be key in developing new methods to treat wounds and accelerate wound healing in the future.


2022 ◽  
Vol 8 ◽  
Author(s):  
Qianqian Bao ◽  
Qianqian Huang ◽  
Yunna Chen ◽  
Qiang Wang ◽  
Ran Sang ◽  
...  

Extracellular vesicles (EVs) are nanosized particles released by numerous kinds of cells, which are now increasingly considered as essential vehicles of cell-to-cell communication and biomarkers in disease diagnosis and treatment. They contain a variety of biomolecular components, including lipids, proteins and nucleic acids. These functional molecules can be transmitted between tumor cells and other stromal cells such as endothelial cells, fibroblasts and immune cells utilizing EVs. As a result, tumor-derived EVs can deliver molecules to remodel the tumor microenvironment, thereby influencing cancer progression. On the one hand, tumor-derived EVs reprogram functions of endothelial cells, promote cancer-associated fibroblasts transformation, induce resistance to therapy and inhibit the immune response to form a pro-tumorigenic environment. On the other hand, tumor-derived EVs stimulate the immune response to create an anti-tumoral environment. This article focuses on presenting a comprehensive and critical overview of the potential role of tumor-derived EVs-mediated communication in the tumor microenvironment.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 145
Author(s):  
Cristina Almeida ◽  
Ana Luísa Teixeira ◽  
Francisca Dias ◽  
Vera Machado ◽  
Mariana Morais ◽  
...  

Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.


2015 ◽  
Vol 58 ◽  
pp. 115-131 ◽  
Author(s):  
Ayane Motomitsu ◽  
Shinichiro Sawa ◽  
Takashi Ishida

The ligand–receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone–receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
C Cai ◽  
B Koch ◽  
S Akhras ◽  
E Hildt ◽  
S Zeuzem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document