scholarly journals Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance

Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Dina Franić ◽  
Klara Zubčić ◽  
Mirta Boban

Protein homeostasis, or proteostasis, is crucial for the functioning of a cell, as proteins that are mislocalized, present in excessive amounts, or aberrant due to misfolding or other type of damage can be harmful. Proteostasis includes attaining the correct protein structure, localization, and the formation of higher order complexes, and well as the appropriate protein concentrations. Consequences of proteostasis imbalance are evident in a range of neurodegenerative diseases characterized by protein misfolding and aggregation, such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis. To protect the cell from the accumulation of aberrant proteins, a network of protein quality control (PQC) pathways identifies the substrates and direct them towards refolding or elimination via regulated protein degradation. The main pathway for degradation of misfolded proteins is the ubiquitin-proteasome system. PQC pathways have been first described in the cytoplasm and the endoplasmic reticulum, however, accumulating evidence indicates that the nucleus is an important PQC compartment for ubiquitination and proteasomal degradation of not only nuclear, but also cytoplasmic proteins. In this review, we summarize the nuclear ubiquitin-proteasome pathways involved in proteostasis maintenance in yeast, focusing on inner nuclear membrane-associated degradation (INMAD) and San1-mediated protein quality control.

2018 ◽  
Vol 87 (1) ◽  
pp. 725-749 ◽  
Author(s):  
Charisma Enam ◽  
Yifat Geffen ◽  
Tommer Ravid ◽  
Richard G. Gardner

Nuclear proteins participate in diverse cellular processes, many of which are essential for cell survival and viability. To maintain optimal nuclear physiology, the cell employs the ubiquitin-proteasome system to eliminate damaged and misfolded proteins in the nucleus that could otherwise harm the cell. In this review, we highlight the current knowledge about the major ubiquitin-protein ligases involved in protein quality control degradation (PQCD) in the nucleus and how they orchestrate their functions to eliminate misfolded proteins in different nuclear subcompartments. Many human disorders are causally linked to protein misfolding in the nucleus, hence we discuss major concepts that still need to be clarified to better understand the basis of the nuclear misfolded proteins’ toxic effects. Additionally, we touch upon potential strategies for manipulating nuclear PQCD pathways to ameliorate diseases associated with protein misfolding and aggregation in the nucleus.


Author(s):  
Xu Zhou ◽  
Xiongjin Chen ◽  
Tingting Hong ◽  
Miaoping Zhang ◽  
Yujie Cai ◽  
...  

AbstractThe tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.


Author(s):  
Yasmeena Akhter ◽  
Jahangir Nabi ◽  
Hinna Hamid ◽  
Nahida Tabassum ◽  
Faheem Hyder Pottoo ◽  
...  

Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.


2021 ◽  
Author(s):  
Caroline Kampmeyer ◽  
Sven Larsen-Ledet ◽  
Morten Rose Wagnkilde ◽  
Mathias Michelsen ◽  
Henriette K. M. Iversen ◽  
...  

Degrons are short stretches of amino acids or structural motifs that are embedded in proteins. They mediate recognition by E3 ubiquitin-protein ligases and thus confer protein degradation via the ubiquitin-proteasome system. Well-described degrons include the N-degrons, destruction boxes, and the PIP degrons, which mediate the controlled degradation of various proteins including signaling components and cell cycle regulators. In comparison, the so-called protein quality control (PQC) degrons that mediate the degradation of structurally destabilized or misfolded proteins are not well described. Here, we show that disease-linked DHFR missense variants are structurally destabilized and chaperone-dependent proteasome targets. We systematically mapped regions within DHFR to assess those that act as cytosolic PQC degrons in yeast cells. Two regions, DHFR-Deg13-36 (here Deg1) and DHFR-Deg61-84 (here Deg2), act as degrons and conferred degradation to unrelated fusion partners. The proteasomal turnover of Deg2 was dependent on the molecular chaperone Hsp70. Structural analyses by NMR and hydrogen/deuterium exchange revealed that Deg2 is buried in wild-type DHFR, but becomes transiently exposed in the disease-linked missense variants.


2019 ◽  
Author(s):  
Shireen A. Sarraf ◽  
Hetal V. Shah ◽  
Gil Kanfer ◽  
Michael E. Ward ◽  
Richard J. Youle

AbstractMisfolded protein aggregates can disrupt cellular homeostasis and cause toxicity, a hallmark of numerous neurodegenerative diseases. Protein quality control by the ubiquitin proteasome system (UPS) and autophagy is vital for clearance of aggregates and maintenance of cellular homeostasis1. Autophagy receptor proteins bridge the interaction between ubiquitinated proteins and the autophagy machinery allowing selective elimination of cargo2. Aggrephagy is critical to protein quality control, but how aggregates are recognized and targeted for degradation is not well understood. Here we examine the requirements for 5 autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in proteotoxic stress-induced aggregate clearance. Endogenous TAX1BP1 is both recruited to and required for the clearance of stress-induced aggregates while overexpression of TAX1BP1 increases aggregate clearance through autophagy. Furthermore, TAX1BP1 depletion sensitizes cells to proteotoxic stress and Huntington’s disease-linked polyQ proteins, whereas TAX1BP1 overexpression clears cells of polyQ protein aggregates by autophagy. We propose a broad role for TAX1BP1 in the clearance of cytotoxic proteins, thus identifying a new mode of clearance of protein inclusions.


Author(s):  
Tomohiro Nakamura ◽  
Stuart A. Lipton

Neurodegenerative diseases (NDDs) often represent disorders of protein folding. Rather than large aggregates, recent evidence suggests that soluble oligomers of misfolded proteins are the most neurotoxic species. Emerging evidence points to small, soluble oligomers of misfolded proteins as the cause of synaptic dysfunction and loss, the major pathological correlate to disease progression in many NDDs including Alzheimer’s disease. The protein quality control machinery of the cell, which includes molecular chaperones as found in the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS), and various forms of autophagy, can counterbalance the accumulation of misfolded proteins to some extent. Their ability to eliminate the neurotoxic effects of misfolded proteins, however, declines with age. A plausible explanation for the age-dependent deterioration of the quality control machinery involves compromise of these systems by excessive generation of reactive oxygen species (ROS), such as superoxide anion (O2-), and reactive nitrogen species (RNS), such as nitric oxide (NO). The resulting redox stress contributes to the accumulation of misfolded proteins. Here, we focus on aberrantly increased generation of NO-related species since this process appears to accelerate the manifestation of key neuropathological features, including protein misfolding. We review the chemical mechanisms of posttranslational modification by RNS such as protein S-nitrosylation of critical cysteine thiol groups and nitration of tyrosine residues, showing how they contribute to the pathogenesis of NDDs.


Sign in / Sign up

Export Citation Format

Share Document