scholarly journals The Budapest Amyloid Predictor and Its Applications

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.

2018 ◽  
Vol 14 (03) ◽  
pp. 180 ◽  
Author(s):  
Gang Zhou ◽  
Yicheng Ji ◽  
Xiding Chen ◽  
Fangfang Zhang

<p>With the rapid development of computer, artificial intelligence and big data technology, artificial neural networks have become one of the most powerful machine learning algorithms. In the practice, most of the applications of artificial neural networks use back propagation neural network and its variation. Besides the back propagation neural network, various neural networks have been developing in order to improve the performance of standard models. Though neural networks are well known method in the research of real estate, there is enormous space for future research in order to enhance their function. Some scholars combine genetic algorithm, geospatial information, support vector machine model, particle swarm optimization with artificial neural networks to appraise the real estate, which is helpful for the existing appraisal technology. The mass appraisal of real estate in this paper includes the real estate valuation in the transaction and the tax base valuation in the real estate holding. In this study we focus on the theoretical development of artificial neural networks and mass appraisal of real estate, artificial neural networks model evolution and algorithm improvement, artificial neural networks practice and application, and review the existing literature about artificial neural networks and mass appraisal of real estate. Finally, we provide some suggestions for the mass appraisal of China's real estate.</p>


2019 ◽  
Vol 8 (2) ◽  
pp. 6413-6417

One of the impact factor for any organizations or banks revenue and service quality is credit card fraud activities. Hence, need of efficient approach for detect early potential fraud and/or prevent them. In this paper, we considered pre-processing and used deep convolution neural network called as Space Invariant Artificial Neural Networks for classifying fraudsters. Available Credit card fraud dataset may not have sufficient information hence need pre-processing. The proposed approach has pre-processing phrase to make as robust. This approach used leverage layers and suitable tuning parameters for getting good classification accuracy. In neural network applications, choosing of tuning parameters and model selection has great role in solving the problems. We have done careful analysis and selected leverage layers and corresponding parameter values. The proposed architecture tested with all possible tuning parameters to evaluate the performance on pre-processed credit card fraud records. We found the proposed robust SIANN (RSIANN) is outperformed other state-of-art machine learning (ML) algorithms (Support vector machine (SVM), random forest (RF), Navie bayes and deep convolution neural network (DCNN) in terms of accuracy (85%). Thus, this model analyses the transaction and decide it fraud or not.


2017 ◽  
Vol 28 (5) ◽  
pp. 893-903 ◽  
Author(s):  
S. Sankar Ganesh ◽  
Pachaiyappan Arulmozhivarman ◽  
Rao Tatavarti

Abstract Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO2, CO, O3, PM2.5, SO2, and PM10 for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


Author(s):  
M. A. Rafe Biswas ◽  
Melvin D. Robinson

A direct methanol fuel cell can convert chemical energy in the form of a liquid fuel into electrical energy to power devices, while simultaneously operating at low temperatures and producing virtually no greenhouse gases. Since the direct methanol fuel cell performance characteristics are inherently nonlinear and complex, it can be postulated that artificial neural networks represent a marked improvement in performance prediction capabilities. Artificial neural networks have long been used as a tool in predictive modeling. In this work, an artificial neural network is employed to predict the performance of a direct methanol fuel cell under various operating conditions. This work on the experimental analysis of a uniquely designed fuel cell and the computational modeling of a unique algorithm has not been found in prior literature outside of the authors and their affiliations. The fuel cell input variables for the performance analysis consist not only of the methanol concentration, fuel cell temperature, and current density, but also the number of cells and anode flow rate. The addition of the two typically unconventional variables allows for a more distinctive model when compared to prior neural network models. The key performance indicator of our neural network model is the cell voltage, which is an average voltage across the stack and ranges from 0 to 0:8V. Experimental studies were carried out using DMFC stacks custom-fabricated, with a membrane electrode assembly consisting of an additional unique liquid barrier layer to minimize water loss through the cathode side to the atmosphere. To determine the best fit of the model to the experimental cell voltage data, the model is trained using two different second order training algorithms: OWO-Newton and Levenberg-Marquardt (LM). The OWO-Newton algorithm has a topology that is slightly different from the topology of the LM algorithm by the employment of bypass weights. It can be concluded that the application of artificial neural networks can rapidly construct a predictive model of the cell voltage for a wide range of operating conditions with an accuracy of 10−3 to 10−4. The results were comparable with existing literature. The added dimensionality of the number of cells provided insight into scalability where the coefficient of the determination of the results for the two multi-cell stacks using LM algorithm were up to 0:9998. The model was also evaluated with empirical data of a single-cell stack.


2014 ◽  
Vol 38 (6) ◽  
pp. 1681-1693 ◽  
Author(s):  
Braz Calderano Filho ◽  
Helena Polivanov ◽  
César da Silva Chagas ◽  
Waldir de Carvalho Júnior ◽  
Emílio Velloso Barroso ◽  
...  

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.


Sign in / Sign up

Export Citation Format

Share Document