scholarly journals High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1146
Author(s):  
Igor Splichal ◽  
Alla Splichalova

Intra-amniotic infections (IAI) are one of the reasons for preterm birth. High mobility group box 1 (HMGB1) is a nuclear protein with various physiological functions, including tissue healing. Its excessive extracellular release potentiates inflammatory reaction and can revert its action from beneficial to detrimental. We infected the amniotic fluid of a pig on the 80th day of gestation with 1 × 104 colony forming units (CFUs) of E. coli O55 for 10 h, and evaluated the appearance of HMGB1, receptor for glycation endproducts (RAGE), and Toll-like receptor (TLR) 4 in the amniotic membrane and fluid. Sham-infected amniotic fluid served as a control. The expression and release of HMGB1 were evaluated by Real-Time PCR, immunofluorescence, immunohistochemistry, and ELISA. The infection downregulated HMGB1 mRNA expression in the amniotic membrane, changed the distribution of HMGB1 protein in the amniotic membrane, and increased its level in amniotic fluid. All RAGE mRNA, protein expression in the amniotic membrane, and soluble RAGE level in the amniotic fluid were downregulated. TLR4 mRNA and protein expression and soluble TLR4 were all upregulated. HMGB1 is a potential target for therapy to suppress the exaggerated inflammatory response. This controlled expression and release can, in some cases, prevent the preterm birth of vulnerable infants. Studies on suitable animal models can contribute to the development of appropriate therapy.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chih-Zen Chang ◽  
Chih-Lung Lin ◽  
Shu-Chuan Wu ◽  
Aij-Lie Kwan

High-mobility group box 1 (HMGB1) was shown to be an important extracellular mediator involved in vascular inflammation of animals following subarachnoid hemorrhage (SAH). This study is of interest to examine the efficacy of purpurogallin, a natural phenol, on the alternation of cytokines and HMGB1 in a SAH model. A rodent double hemorrhage SAH model was employed. Basilar arteries (BAs) were harvested to examine HMGB1 mRNA and protein expression (Western blot). CSF samples were to examine IL-1β, IL-6, IL-8, and TNF-α(rt-PCR). Deformed endothelial wall, tortuous elastic lamina, and necrotic smooth muscle were observed in the vessels of SAH groups but were absent in the purpurogallin group. IL-1β, IL-6, and TNF-αin the SAH only and SAH plus vehicle groups were significantly elevated(P<0.01). Purpurgallin dose-dependently reduced HMGB1 protein expression. Likewise, high dose purpurogallin reduced TNF-αand HMGB1 mRNA levels. In conclusion, purpurogallin exerts its neuroinflammation effect through the dual effect of inhibiting IL-6 and TNF-αmRNA expression and reducing HMGB1 protein and mRNA expression. This study supports purpurogallin could attenuate both proinflammatory cytokines and late-onset inflammasome in SAH induced vasospasm.


2019 ◽  
Vol 20 (24) ◽  
pp. 6294 ◽  
Author(s):  
Igor Splichal ◽  
Sharon M. Donovan ◽  
Vera Jenistova ◽  
Iva Splichalova ◽  
Hana Salmonova ◽  
...  

High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can be actively secreted by immune cells after different immune stimuli or passively released from cells undergoing necrosis. HMGB1 amplifies inflammation, and its hypersecretion contributes to multiple organ dysfunction syndrome and death. We tested possible immunomodulatory effect of commensal Lactobacillus amylovorus (LA), Lactobacillus mucosae (LM) or probiotic Escherichia coli Nissle 1917 (EcN) in infection of gnotobiotic piglets with Salmonella Typhimurium (ST). Transcription of HMGB1 and Toll-like receptors (TLR) 2, 4, and 9 and receptor for advanced glycation end products (RAGE), TLR4-related molecules (MD-2, CD14, and LBP), and adaptor proteins (MyD88 and TRIF) in the ileum and colon were measured by RT-qPCR. Expression of TLR4 and its related molecules were highly upregulated in the ST-infected intestine, which was suppressed by EcN, but not LA nor LM. In contrast, HMGB1 expression was unaffected by ST infection or commensal/probiotic administration. HMGB1 protein levels in the intestine measured by ELISA were increased in ST-infected piglets, but they were decreased by previous colonization with E. coli Nissle 1917 only. We conclude that the stability of HMGB1 mRNA expression in all piglet groups could show its importance for DNA transcription and physiological cell functions. The presence of HMGB1 protein in the intestinal lumen probably indicates cellular damage.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ga-Hyun Son ◽  
Youngmi Kim ◽  
Jae Jun Lee ◽  
Keun-Young Lee ◽  
Heejin Ham ◽  
...  

AbstractHigh mobility group box 1 (HMGB1) is a prototypic alarmin and plays an important role in the pathogenesis of inflammatory process in spontaneous preterm birth. This study was conducted to compare the levels of HMGB1 in amniotic fluid and amnion membranes in women with chorioamnionitis/intra-amniotic inflammation to the levels in healthy controls. We also aimed to elucidate the involvement of microRNA-548 (miR-548) in regulating HMGB1 expression and its function in human amniotic epithelial cells (hAECs). A bioinformatics analysis predicted the binding of HMGB1 by the miR-548 cluster. A repressed and forced expression assay in hAECs was performed to investigate the causal relationship between the miR-548 cluster and HMGB1. The levels of HMGB1 in amniotic fluid and amnion membranes were significantly higher in patients with intra-amniotic inflammation/chorioamnionitis than in those without inflammation. The miR-548 was significantly under-expressed in amnion membranes from patients with chorioamnionitis than in normal term controls. Repressed expression of miR-548 up-regulated HMGB1 expression in hAECs and increased its release from hAECs. Moreover, forced expression of miR-548 suppressed HMGB1 and inflammatory cytokines in hAECs, which increased when treated with lipopolysaccharide. These results suggest miR-548 can alter the inflammatory responses in hAECs, and might be involved in the pathogenesis of preterm birth by regulating HMGB1.


Cytokine ◽  
2016 ◽  
Vol 81 ◽  
pp. 82-87 ◽  
Author(s):  
Margaret A. Baumbusch ◽  
Catalin S. Buhimschi ◽  
Emily A. Oliver ◽  
Guomao Zhao ◽  
Stephen Thung ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 1474-1485 ◽  
Author(s):  
Eyaldeva C. Vijayakumar ◽  
Lokesh Kumar Bhatt ◽  
Kedar S. Prabhavalkar

High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63073 ◽  
Author(s):  
Yuki Kuroiwa ◽  
Yoichi Takakusagi ◽  
Tomoe Kusayanagi ◽  
Kouji Kuramochi ◽  
Takahiko Imai ◽  
...  

2022 ◽  
Vol 20 ◽  
Author(s):  
Fathimath Zaha Ikram ◽  
Alina Arulsamy ◽  
Thaarvena Retinasamy ◽  
Mohd. Farooq Shaikh

Background: High mobility group box 1 (HMGB1) protein is a damage-associated molecular pattern (DAMP) molecule that plays an important role in the repair and regeneration of tissue injury. It also acts as a pro-inflammatory cytokine through the activation of toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE), to elicit the neuroinflammatory response. HMGB1 may aggravate several cellular responses which may lead to pathological inflammation and cellular death. Thus, there have been a considerable amount of research into the pathological role of HMGB1 in diseases. However, whether the mechanism of action of HMGB1 is similar in all neurodegenerative disease pathology remains to be determined. Objective: Therefore, this systematic review aimed to critically evaluate and elucidate the role of HMGB1 in the pathology of neurodegeneration based on the available literature. Methods: A comprehensive literature search was performed on four databases; EMBASE, PubMed, Scopus, and CINAHL Plus. Results: A total of 85 articles were selected for critical appraisal, after subjecting to the inclusion and exclusion criteria in this study. The selected articles revealed that HMGB1 levels were found elevated in most neurodegeneration except in Huntington’s disease and Spinocerebellar ataxia, where the levels were found decreased. This review also showcased that HMGB1 may act on distinctive pathways to elicit its pathological response leading to the various neurodegeneration processes/diseases. Conclusion: While there have been promising findings in HMGB1 intervention research, further studies may still be required before any HMGB1 intervention may be recommended as a therapeutic target for neurodegenerative diseases.


2014 ◽  
Vol 26 (4) ◽  
pp. 777-783 ◽  
Author(s):  
Young Bok Ko ◽  
Boh-Ram Kim ◽  
Sang Lyun Nam ◽  
Jung Bo Yang ◽  
Sang-Yoon Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document