scholarly journals The Pyrazolyl-Urea Gege3 Inhibits the Activity of ANXA1 in the Angiogenesis Induced by the Pancreatic Cancer Derived EVs

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1758
Author(s):  
Raffaella Belvedere ◽  
Elva Morretta ◽  
Nunzia Novizio ◽  
Silvana Morello ◽  
Olga Bruno ◽  
...  

The pyrazolyl-urea Gege3 molecule has shown interesting antiangiogenic effects in the tumor contest. Here, we have studied the role of this compound as interfering with endothelial cells activation in response to the paracrine effects of annexin A1 (ANXA1), known to be involved in promoting tumor progression. ANXA1 has been analyzed in the extracellular environment once secreted through microvesicles (EVs) by pancreatic cancer (PC) cells. Particularly, Gege3 has been able to notably prevent the effects of Ac2-26, the ANXA1 mimetic peptide, and of PC-derived EVs on endothelial cells motility, angiogenesis, and calcium release. Furthermore, this compound also inhibited the translocation of ANXA1 to the plasma membrane, otherwise induced by the same ANXA1-dependent extracellular stimuli. Moreover, these effects have been mediated by the indirect inhibition of protein kinase Cα (PKCα), which generally promotes the phosphorylation of ANXA1 on serine 27. Indeed, by the subtraction of intracellular calcium levels, the pathway triggered by PKCα underwent a strong inhibition leading to the following impediment to the ANXA1 localization at the plasma membrane, as revealed by confocal and cytofluorimetry analysis. Thus, Gege3 appeared an attractive molecule able to prevent the paracrine effects of PC cells deriving ANXA1 in the tumor microenvironment.

2018 ◽  
Vol 19 (12) ◽  
pp. 3878 ◽  
Author(s):  
Emanuela Pessolano ◽  
Raffaella Belvedere ◽  
Valentina Bizzarro ◽  
Paola Franco ◽  
Iolanda De Marco ◽  
...  

Pancreatic Cancer (PC) is one of the most aggressive malignancies worldwide. As annexin A1 (ANXA1) is implicated in the establishment of tumour metastasis, the role of the protein in PC progression as a component of extracellular vesicles (EVs) has been investigated. EVs were isolated from wild type (WT) and ANXA1 knock-out (KO) PC cells and then characterised by multiple approaches including Western blotting, Field Emission-Scanning Electron Microscopy, and Dynamic Light Scattering. The effects of ANXA1 on tumour aggressiveness were investigated by Wound-Healing and invasion assays and microscopic analysis of the Epithelial to Mesenchymal Transition (EMT). The role of ANXA1 on angiogenesis was also examined in endothelial cells, using similar approaches. We found that WT cells released more EVs enriched in exosomes than those from cells lacking ANXA1. Notably, ANXA1 KO cells recovered their metastatic potential only when treated by WT EVs as they underwent EMT and a significant increase of motility. Similarly, human umbilical vein endothelial cells (HUVEC) migrated and invaded more rapidly when treated by WT EVs whereas ANXA1 KO EVs weakly induced angiogenesis. This study suggests that EVs-related ANXA1 is able to promote cell migration, invasion, and angiogenesis, confirming the relevance of this protein in PC progression.


2003 ◽  
Vol 278 (12) ◽  
pp. 10282-10290 ◽  
Author(s):  
Stephen R. Bolsover ◽  
Juan C. Gomez-Fernandez ◽  
Senena Corbalan-Garcia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2409-2409
Author(s):  
Yiwen Song ◽  
Sonja Vermeren ◽  
Wei Tong

Abstract ARAP3 is a member of the dual Arf-and-Rho GTPase-activating proteins (GAP) family, functioning specifically to inactivate its substrates Arf6 and RhoA GTPases. ARAP3 is translocated to the plasma membrane after PIP3 binding to the first two of its five PH domains, facilitating its GAP activity in a PI3K-mediated manner. Rho family GTPases are found to play critical roles in many aspects of hematopoietic stem and progenitor cells (HSPCs), such as engraftment and migration, while a role for Arf family GTPases in hematopoiesis is less defined. Previous studies found that either exogenous ARAP3 expression in epithelial cells or RNAi-mediated ARAP3 depletion in endothelial cells disrupts F-actin or lamellipodia formation, respectively, resulting in a cell rounding phenotype and failure to spread. This implies that ARAP3 control of Arf6 and RhoA is tightly regulated, and maintaining precise regulation of ARAP3 levels is crucial to actin organization in the cell. Although ARAP3 was first identified in porcine leukocytes, its function in the hematopoietic system is incompletely understood. Germline deletion of Arap3 results in embryonic lethality due to angiogenic defects. Since endothelial cells are important for the emergence of HSCs during embryonic development, early lethality precludes further studying the role of ARAP3 in definitive hematopoiesis. Therefore, we generated several transgenic mouse models to manipulate ARAP3 in the hematopoietic compartment: (1) Arap3fl/fl;Vav-Cretg conditional knockout mice (CKO) deletes ARAP3 specifically in hematopoietic cells, (2) Arap3fl/fl;VE-Cadherin -Cretg CKO mice selectively deletes ARAP3 in embryonic endothelial cells and thereby hematopoietic cells, and (3) Arap3R302,3A/R302,3A germline knock-in mice (KI/KI) mutates the first PH domain to ablate PI3K-mediated ARAP3 activity in all tissues. We found an almost 100% and 90% excision efficiency in the Vav-Cretg- and VEC-Cretg- mediated deletion of ARAP3 in the bone marrow (BM), respectively. However, the CKO mice appear normal in steady-state hematopoiesis, showing normal peripheral blood (PB) counts and normal distributions of all lineages in the BM. Interestingly, we observed an expansion of the Lin-Scal+cKit+ (LSK) stem and progenitor compartment in the CKO mice. This is due to an increase in the multi-potent progenitor (MPP) fraction, but not the long-term or short-term HSC (LT- or ST-HSC) fractions. Although loss of ARAP3 does not alter the frequency of phenotypically-characterized HSCs, we performed competitive BM transplantation (BMT) studies to investigate the functional impact of ARAP3 deficiency. 500 LSK cells from Arap3 CKO (Arap3fl/fl;Vav-Cretg and Arap3fl/fl;VEC-Cretg) or Arap3fl/fl control littermate donors were transplanted with competitor BM cells into irradiated recipients. We observed similar donor-derived reconstitution and lineage repopulation in the mice transplanted with Arap3fl/fl and Arap3 CKO HSCs. Moreover, Arap3 CKO HSCs show normal reconstitution in secondary transplants. Arap3 KI/KI mice are also grossly normal and exhibit an expanded MPP compartment. Importantly, Arap3KI/KI LSKs show impaired reconstitution compared to controls in the competitive BMT assays. Upon secondary and tertiary transplantation, reconstitution in both PB and BM diminished in the Arap3KI/KI groups, in contrast to sustained reconstitution in the control group. Additionally, we observed a marked skewing towards the myeloid lineage in Arap3KI/KI transplanted secondary and tertiary recipients. These data suggest a defect in HSC function in Arap3KI/KI mice. Myeloid-skewed reconstitution also points to the possibility of selection for “myeloid-primed” HSCs and against “balanced” HSCs, as HSCs exhaust during aging or upon serial transplantation. Taken together, our data suggest that ARAP3 plays a non-cell-autonomous role in HSCs by regulating HSC niche cells. Alternatively, the ARAP3 PH domain mutant that is incapable of locating to the plasma membrane in response to PI3K may exert a novel dominant negative function in HSCs. We are investigating mechanistically how ARAP3 controls HSC engraftment and self-renewal to elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in HSCs. In summary, our studies identify a previously unappreciated role of ARAP3 as a regulator of hematopoiesis and hematopoietic stem and progenitor cell function. Disclosures: No relevant conflicts of interest to declare.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2719
Author(s):  
Nunzia Novizio ◽  
Raffaella Belvedere ◽  
Emanuela Pessolano ◽  
Alessandra Tosco ◽  
Amalia Porta ◽  
...  

Pancreatic cancer (PC) is one of the most aggressive cancers in the world. Several extracellular factors are involved in its development and metastasis to distant organs. In PC, the protein Annexin A1 (ANXA1) appears to be overexpressed and may be identified as an oncogenic factor, also because it is a component in tumor-deriving extracellular vesicles (EVs). Indeed, these microvesicles are known to nourish the tumor microenvironment. Once we evaluated the autocrine role of ANXA1-containing EVs on PC MIA PaCa-2 cells and their pro-angiogenic action, we investigated the ANXA1 paracrine effect on stromal cells like fibroblasts and endothelial ones. Concerning the analysis of fibroblasts, cell migration/invasion, cytoskeleton remodeling, and the different expression of specific protein markers, all features of the cell switching into myofibroblasts, were assessed after administration of wild type more than ANXA1 Knock-Out EVs. Interestingly, we demonstrated a mechanism by which the ANXA1-EVs complex can stimulate the activation of formyl peptide receptors (FPRs), triggering mesenchymal switches and cell motility on both fibroblasts and endothelial cells. Therefore, we highlighted the importance of ANXA1/EVs-FPR axes in PC progression as a vehicle of intercommunication tumor cells-stroma, suggesting a specific potential prognostic/diagnostic role of ANXA1, whether in soluble form or even if EVs are captured in PC.


2016 ◽  
Vol 90 (8) ◽  
pp. 3860-3872 ◽  
Author(s):  
Mohanan Valiya Veettil ◽  
Binod Kumar ◽  
Mairaj Ahmed Ansari ◽  
Dipanjan Dutta ◽  
Jawed Iqbal ◽  
...  

ABSTRACTKaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its naturalin vivotarget cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors. Here, we examined the role of ESCRT-0 component Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in KSHV entry into HMVEC-d by macropinocytosis. Knockdown of Hrs by short hairpin RNA (shRNA) transduction resulted in significant decreases in KSHV entry and viral gene expression. Immunofluorescence analysis (IFA) and plasma membrane isolation and proximity ligation assay (PLA) demonstrated the translocation of Hrs from the cytosol to the plasma membrane of infected cells and association with α-actinin-4. In addition, infection induced the plasma membrane translocation and activation of the serine/threonine kinase ROCK1, a downstream target of the RhoA GTPase. Hrs knockdown reduced these associations, suggesting that the recruitment of ROCK1 is an Hrs-mediated event. Interaction between Hrs and ROCK1 is essential for the ROCK1-induced phosphorylation of NHE1 (Na+/H+exchanger 1), which is involved in the regulation of intracellular pH. Thus, our studies demonstrate the plasma membrane association of ESCRT protein Hrs during macropinocytosis and suggest that KSHV entry requires both Hrs- and ROCK1-dependent mechanisms and that ROCK1-mediated phosphorylation of NHE1 and pH change is an essential event required for the macropinocytosis of KSHV.IMPORTANCEMacropinocytosis is the major entry pathway of KSHV in human dermal microvascular endothelial cells, the natural target cells of KSHV. Although the role of ESCRT protein Hrs has been extensively studied with respect to endosomal movement and sorting of ubiquitinated proteins into lysosomes, its function in macropinocytosis is not known. In the present study, we demonstrate for the first time that upon KSHV infection, the endogenous Hrs localizes to the plasma membrane and the membrane-associated Hrs facilitates assembly of signaling molecules, macropinocytosis, and virus entry. Hrs recruits ROCK1 to the membrane, which is required for the activation of NHE1 and an increase in submembranous intracellular pH occurring during macropinocytosis. These studies demonstrate that the localization of Hrs from the cytosol to the plasma membrane is important for coupling membrane dynamics to the cytosolic signaling events during macropinocytosis of KSHV.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Dianicha Santana ◽  
Asrar B. Malik ◽  
Dolly Mehta ◽  
Yulia A. Komarova

1988 ◽  
Vol 90 (3) ◽  
pp. 465-473 ◽  
Author(s):  
MICHAEL A. LYDAN ◽  
DANTON H. O'DAY

The agents LaCl3, Ins(1,4,5)P3, TMB-8, chlortetracycline (CTC) and A23187 were used to study the requirement for internal calcium mobilization during gamete cell fusion in Dictyostelium discoideum. The inhibition of the influx of calcium (LaCl3) prevented cell fusion in a dose-dependent manner. At the intracellular level, Ins(1,4,5)P3, an endogenous regulator of calcium release from intracellular stores, stimulated cell fusion within one hour following its addition. Treatment with agents that prevent the release of calcium from intracellular stores (TMB-8, CTC) also inhibited cell fusion in a dose-dependent manner. However, the non-specific augmentation of cytosolic calcium levels through the use of the ionophore A23187 inhibited cell fusion, and the amount inhibition was directly related to the drug concentration. Studies on cell morphology and growth plus results from reversibility experiments involving the ability to form macrocysts reveal that these effects are not due to non-specific drug toxicity. In total, these results suggest that the mobilization of calcium both from the extracellular environment and from intracellular stores important and is probably regulated during gamete cell fusion in D. discoideum.


1998 ◽  
Vol 143 (4) ◽  
pp. 1129-1141 ◽  
Author(s):  
Daqing W. Hartwell ◽  
Tanya N. Mayadas ◽  
Gaëtan Berger ◽  
Paul S. Frenette ◽  
Helen Rayburn ◽  
...  

P-selectin is an adhesion receptor for leukocytes expressed on activated platelets and endothelial cells. The cytoplasmic domain of P-selectin was shown in vitro to contain signals required for both the sorting of this protein into storage granules and its internalization from the plasma membrane. To evaluate in vivo the role of the regulated secretion of P-selectin, we have generated a mouse that expresses P-selectin lacking the cytoplasmic domain (ΔCT mice). The deletion did not affect the sorting of P-selectin into α-granules of platelets but severely compromised the storage of P-selectin in endothelial cells. Unstored P-selectin was proteolytically shed from the plasma membrane, resulting in increased levels of soluble P-selectin in the plasma. The ΔCT–P-selectin appeared capable of mediating cell adhesion as it supported leukocyte rolling in the mutant mice. However, a secretagogue failed to upregulate leukocyte rolling in the ΔCT mice, indicating an absence of a releasable storage pool of P-selectin in the endothelium. Furthermore, the neutrophil influx into the inflamed peritoneum was only 30% of the wild-type level 2 h after stimulation. Our results suggest that different sorting mechanisms for P-selectin are used in platelets and endothelial cells and that the storage pool of P-selectin in endothelial cells is functionally important during early stages of inflammation.


2015 ◽  
Vol 43 (3) ◽  
pp. 359-363 ◽  
Author(s):  
Samantha J. Pitt ◽  
Alan J. Stewart

It is well established that mammalian cells contain a small but measurable pool of free or labile zinc in the cytosol that is buffered in the high picomolar range. Recent attention has focused on the fact that this pool of free zinc has signalling effects that can be evoked through extracellular stimuli posing the question as to whether zinc should be regarded as a second messenger. Our knowledge of the targets, the biological significance and the molecular mechanisms of zinc signalling is limited but recent evidence suggests that zinc homoeostasis may be intimately linked to intracellular calcium signalling. In this review, we discuss the role of zinc as an intracellular signalling molecule with an emphasis on the potential role of zinc in shaping calcium-dynamics in cardiac muscle. We also consider the evidence that the cardiac ryanodine receptor (RyR2) is a potential zinc signalling target.


1997 ◽  
Vol 273 (1) ◽  
pp. H347-H355 ◽  
Author(s):  
H. L. Knudsen ◽  
J. A. Frangos

To study the role of the cytoskeleton in mechanochemical transduction, human umbilical vein endothelial cells were exposed to cytoskeleton-disrupting or -stabilizing agents, and the flow-induced production of nitric oxide (NO) as monitored by intracellular levels of guanosine 3',5'-cyclic monophosphate (cGMP) was examined. A shear stress of 20 dyn/cm2 elevated cGMP levels approximately twofold relative to basal (stationary) levels (1.9 +/- 0.1 pmol cGMP in stationary controls; P < 0.01). Treatment with 1 microM phalloidin and 0.5 microM cytochalasin D did not significantly affect the flow-induced response (1.77 +/- 0.23 and 2.89 +/- 0.18 pmol cGMP in stationary controls, respectively), whereas disruption of microtubules with 0.5 microM colchicine significantly elevated the response (3.64 +/- 0.18 pmol cGMP in stationary controls; P < 0.01). The NO synthase inhibitor NG-amino-L-arginine abrogated all flow-induced elevations of cGMP, indicating that increased cGMP levels were mediated by NO. Cytoskeletal disruption with 0.2 microM cytochalasin D or 0.5 microM colchicine did not alter cGMP levels in response to 10 nM bradykinin. The role of the plasma membrane in mechanochemical transduction was examined by treatment with cholesteryl hemisuccinate, which attenuated the flow-induced response in a dose-dependent manner. In conclusion, the pathways of flow- and bradykinin-mediated NO production in endothelial cells did not require actin filament turnover or intact actin or microtubule cytoskeletons, and cholesterol, possibly by stiffening the plasma membrane, attenuated the flow response.


Sign in / Sign up

Export Citation Format

Share Document