scholarly journals miR-210 Regulates Apoptotic Cell Death during Cellular Hypoxia and Reoxygenation in a Diametrically Opposite Manner

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Gurdeep Marwarha ◽  
Øystein Røsand ◽  
Nathan Scrimgeour ◽  
Katrine Hordnes Slagsvold ◽  
Morten Andre Høydal

Apoptotic cell death of cardiomyocytes is a characteristic hallmark of ischemia–reperfusion (I/R) injury. The master hypoxamiR, microRNA-210 (miR-210), is considered the primary driver of the cellular response to hypoxic stress. However, to date, no consensus has emerged with regards to the polarity of the miR-210-elicited cellular response, as miR-210 has been shown to exacerbate as well as attenuate hypoxia-driven apoptotic cell death. Herein, in AC-16 cardiomyocytes subjected to hypoxia-reoxygenation (H-R) stress, we unravel novel facets of miR-210 biology and resolve the biological response mediated by miR-210 into the hypoxia and reoxygenation temporal components. Using transient overexpression and decoy/inhibition vectors to modulate miR-210 expression, we elucidated a Janus role miR-210 in the cellular response to H-R stress, wherein miR-210 mitigated the hypoxia-induced apoptotic cell death but exacerbated apoptotic cell death during cellular reoxygenation. We further delineated the underlying cellular mechanisms that confer this diametrically opposite effect of miR-210 on apoptotic cell death. Our exhaustive biochemical assays cogently demonstrate that miR-210 attenuates the hypoxia-driven intrinsic apoptosis pathway, while significantly augmenting the reoxygenation-induced caspase-8-mediated extrinsic apoptosis pathway. Our study is the first to unveil this Janus role of miR-210 and to substantiate the cellular mechanisms that underlie this functional duality.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Liang Ge ◽  
Yin Cai ◽  
Fan Ying ◽  
Hao Liu ◽  
Dengwen Zhang ◽  
...  

Background. Activation of cell apoptosis is a major form of cell death during myocardial ischemia/reperfusion injury (I/RI). Therefore, examining ways to control cell apoptosis has important clinical significance for improving postischemic recovery. Clinical evidence demonstrated that miR-181c-5p was significantly upregulated in the early phase of myocardial infarction. However, whether or not miR-181c-5p mediates cardiac I/RI through cell apoptosis pathway is unknown. Thus, the present study is aimed at investigating the role and the possible mechanism of miR-181c-5p in apoptosis during I/R injury by using H9C2 cardiomyocytes. Methods and Results. The rat origin H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R, 6 hours hypoxia followed by 6 hours reoxygenation) to induce cell injury. The results showed that H/R significantly increased the expression of miR-181c-5p but not miR-181c-3p in H9C2 cells. In line with this, in an in vivo rat cardiac I/RI model, miR-181c-5p expression was also significantly increased. The overexpression of miR-181c-5p by its agomir transfection significantly aggravated H/R-induced cell injury (increased lactate dehydrogenase level and reduced cell viability) and exacerbated H/R-induced cell apoptosis (greater cleaved caspases 3 expression, Bax/Bcl-2 and more TUNEL-positive cells). In contrast, inhibition of miR-181c-5p in vitro had the opposite effect. By using computational prediction algorithms, protein tyrosine phosphatase nonreceptor type 4 (PTPN4) was predicted as a potential target gene of miR-181c-5p and was verified by the luciferase reporter assay. The overexpression of miR-181c-5p significantly attenuated the mRNA and protein expression of PTPN4 in H9C2 cardiomyocytes. Moreover, knockdown of PTPN4 significantly aggravated H/R-induced enhancement of LDH level, cleaved caspase 3 expression, and apoptotic cell death, which mimicked the proapoptotic effects of miR-181c-5p in H9C2 cardiomyocytes. Conclusions. These findings suggested that miR-181c-5p exacerbates H/R-induced cardiomyocyte injury and apoptosis via targeting PTPN4 and that miR-181c-5p/PTPN4 signaling may yield novel strategies to combat myocardial I/R injury.


1998 ◽  
Vol 274 (1) ◽  
pp. H242-H248 ◽  
Author(s):  
Nilanjana Maulik ◽  
Valerian E. Kagan ◽  
Vladimir A. Tyurin ◽  
Dipak K. Das

Although cardiomyocyte death and infarction associated with ischemia-reperfusion are traditionally believed to be induced via necrosis, recent studies implicated apoptotic cell death in ischemic reperfused tissue. To examine whether myocardial ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15 and 30 min of ischemia as well as 15 min of ischemia followed by 30, 90, or 120 min of reperfusion. At the end of each experiment, hearts were processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from cardiomyocytes to 1.8% agarose gel electrophoresis and photographed under ultraviolet illumination. In addition, high-performance thin-layer chromatography (HPTLC) of aminophospholipids labeled with 2,4,6-trinitrobenzenesulfonate was performed to evaluate phospholipid topography in cardiomyocytes. The results of our study revealed apoptotic cells only in the 90- and 120-min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscope. None of the ischemic hearts showed any evidence of apoptosis. These results corroborated with the findings of DNA fragmentation that showed increased ladders of DNA bands in the 120-min reperfused hearts, representing integer multiples of the internucleosomal DNA length (∼180 bp). Two-dimensional HPTLC of the phospholipids obtained from the cardiomyocytes and transbilayer organization of the phosphatidylethanolamine (PE) and phosphatidylserine (PS) in the myocytes indicated translocation of both PE and PS from the inner leaflet to the outer leaflet of the membrane as early as after 20 min of ischemia. These results demonstrate that the redistribution of PS and PE precedes the apototic cell death and DNA fragmentation associated with the reperfusion of ischemic myocardium, suggesting that ischemia may trigger the signal for apoptosis although it becomes evident during reperfusion.


2010 ◽  
Vol 298 (5) ◽  
pp. H1510-H1517 ◽  
Author(s):  
Wobbe Bouma ◽  
Mio Noma ◽  
Shinya Kanemoto ◽  
Muneaki Matsubara ◽  
Bradley G. Leshnower ◽  
...  

The female sex has been associated with improved myocardial salvage after ischemia and reperfusion (I/R). Estrogen, specifically 17β-estradiol, has been demonstrated to mediate this phenomenon by limiting cardiomyocyte apoptosis. We sought to quantitatively assess the effect of sex, ovarian hormone loss, and I/R on myocardial Bax, Bcl-2, and apoptosis repressor with caspase recruitment domain (ARC) expression. Male ( n = 48), female ( n = 26), and oophorectomized female ( n = 20) rabbits underwent 30 min of regional ischemia and 3 h of reperfusion. The myocardial area at risk and infarct size were determined using a double-staining technique and planimetry. In situ oligo ligation was used to assess apoptotic cell death. Western blot analysis was used to determine proapoptotic (Bax) and antiapoptotic (Bcl-2 and ARC) protein levels in all three ischemic groups and, additionally, in three nonischemic groups. Infarct size (43.7 ± 3.2%) and apoptotic cell death (0.51 ± 0.10%) were significantly attenuated in females compared with males (56.4 ± 1.6%, P < 0.01, and 4.29 ± 0.95%, P < 0.01) and oophorectomized females (55.7 ± 3.4%, P < 0.05, and 4.36 ± 0.51%, P < 0.01). Females expressed significantly higher baseline ARC levels (3.62 ± 0.29) compared with males (1.78 ± 0.18, P < 0.01) and oophorectomized females (1.08 ± 0.26, P < 0.01). Males expressed a significantly higher baseline Bax-to-Bcl-2 ratio (4.32 ± 0.99) compared with females (0.65 ± 0.13, P < 0.01) and oophorectomized females (0.42 ± 0.10, P < 0.01). I/R significantly reduced Bax-to-Bcl-2 ratios in males. In all other groups, ARC levels and Bax-to-Bcl-2 ratios did not significantly change. These results support the conclusion that in females, endogenous estrogen limits I/R-induced cardiomyocyte apoptosis by producing a baseline antiapoptotic profile, which is associated with estrogen-dependent high constitutive myocardial ARC expression.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1708 ◽  
Author(s):  
Dahae Lee ◽  
Yong Hoon Lee ◽  
Kwang Ho Lee ◽  
Bum Soo Lee ◽  
Akida Alishir ◽  
...  

The global incidence of breast cancer has increased. However, there are many impediments to the development of safe and effective anticancer drugs. The aim of the present study was to evaluate the effect of aviculin isolated from Lespedeza cuneata (Dum. Cours.) G. Don. (Fabaceae) on MCF-7 human breast cancer cells and determine the underlying mechanism. Using the bioassay-guided isolation by water soluble tetrazolium salt (WST-1)-based Ez-Cytox assay, nine compounds (four lignan glycosides (1–4), three flavonoid glycosides (5–7), and two phenolic compounds (8 and 9)) were isolated from the ethyl acetate (EA) fraction of the L. cuneata methanolic extract. Of these, aviculin (2), a lignan glycoside, was the only compound that reduced metabolic activity on MCF-7 cells below 50% (IC50: 75.47 ± 2.23 μM). The underlying mechanism was analyzed using the annexin V Alexa Fluor 488 binding assay and Western blotting. Aviculin (2) was found to induce apoptotic cell death through the intrinsic apoptosis pathway, as indicated by the increased expression of initiator caspase-9, executioner caspase-7, and poly (ADP-ribose) polymerase (PARP). Aviculin (2)-induced apoptotic cell death was accompanied by an increase in the Bax/Bcl-2 ratio. These findings demonstrated that aviculin (2) could induce breast cancer cell apoptosis through the intrinsic apoptosis pathway, and it can therefore be considered an excellent candidate for herbal treatment of breast cancer.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Xiangwei Luo ◽  
Wenjuan Zhou ◽  
Lingling Wei ◽  
Liang Wei ◽  
Fengxue Zhang

The pathological expression of many of the deadly human diseases such as myocardial infarction, renal failure etc. is cell death. In cancer research, myriads of ways have been found to kill a cell. However, we are still craving for an applicable mechanism to prevent cell death. The majority of the current research is to directly target the apoptosis pathway. While some compounds have been developed, none of them are pharmaceutically important likely due to the inherent toxic nature of the target. Here, we report a novel mechanism to block the cell death pathway by activating the cells’ own protective programs coded for stress. Components of the unfolded protein response (UPS) in ER have been implicated in the protection of ischemia/reperfusion heart in recent research. By targeting the biosynthesis of oligosaccharide, which activated UPS as indicated by the expression of the ER chaperones Grp94 and Grp78, we were able to completely block the Hsp90 inhibitor induced apoptotic cell death as well as the oxidative stress (as exemplified by sodium nitroprusside, SNP) induced necrotic cell death in multiple cell lines. Caspase-3 activation and PARP cleavage were nearly completely inhibited. While awaiting further exploration, the biosynthesis of the oligosaccharide could turn out to be an applicable target for acute conditions such as cardiac injury because of its relatively safe nature.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2177-2177
Author(s):  
Yuri Kamitsuji ◽  
Souichi Adachi ◽  
Motonobu Watanabe ◽  
Hiroshi Matsubara ◽  
Yasuhiro Mizushima ◽  
...  

Abstract The blockade of Bcr-Abl signaling suppresses cellular growth and induces cell death in Bcr-Abl-positive (Bcr-Abl+) cells. We herein assessed the cell death mechanisms induced by INNO-406 (formerly NS-187; Kimura et al, Blood 2005), in four CML-derived Bcr-Abl+ cell lines (K562, KT-1, BV173 and MYL), and Ba/F3 harboring wild type bcr-abl (Ba/F3/wt bcr-abl). When cells are treated by INNO-406, the accumulation of subG1 fraction was seen in all five cell lines. This cell death was accompanied by loss of mitochondrial membrane potential and was inhibited by over-expression of Bcl-2, indicating that INNO-406-induced cell death is mainly mediated by mitochondria-dependent apoptosis. Caspase-3 activation in INNO-406-treated cell was also common among all cell lines. However, the inhibition of caspase activity by ZVAD-fmk (ZVAD), a pan-caspase inhibitor, was variable in the cell lines tested. In K562, KT-1 and BV173 cells treated with INNO-406, ZVAD almost completely prevented apoptosis (i.e. showing atypical feature for apoptosis, no DNA fragmentation and no accumulation of subG1 fraction), with cell death resulting from morphologically non-apoptotic cell death. The percentages of non-apoptotic cells under ZVAD co-treated with INNO-406 varied among the three cell lines, suggesting that the dependence on non-apoptotic cell death is variable. While, in MYL and Ba/F3/wt bcr-abl cells, despite the sufficient inhibition of caspases’ activity, the inhibition of the cell death by ZVAD was only partial and these cell lines still underwent apoptosis (i.e. showing DNA fragmentation and the accumulation of subG1 population), suggesting the presence of caspase-independent apoptotic machineries. In addition, assay data for apoptosome activities (complex of Apaf-1, cytochrome c and caspase-9 that initiates and drives cysteine protease activities of caspase in mitochondrial-mediated pathway) suggested that cell types could be largely subdivided into two groups, namely those cells with high apoptosome activity (K562, KT-1 and BV173) that undergo non-apoptotic, and, those cells with low apoptosome activity (MYL and Ba/F3/wt bcr-abl.) that undergo caspase-independent apoptosis when caspase activity was blocked by ZVAD. These data indicate that there is a common initial pathway for cell death due to INNO-406, while the pathway for cell death commitment (i.e. dependence on apoptosome/caspases-mediated apoptosis pathway that has been commonly believed to be central for apoptosis execution) vary among cellular context in Bcr-Abl+ leukemic cells. Moreover, in a mouse model of primary human CML in blast crisis, INNO-406 caused cell death with fragmented nuclei typical to apoptosis and “necklace-like” nuclei not typical of apoptosis, further implicating the significance of involvement of caspase-independent, non-apoptotic cell death in vivo. Further studies of the role of caspase-independent cell death in patient-derived Bcr-Abl+ cells and the molecular mechanisms that lead to mitochondrial-depolarization and caspase-independent apoptotic and/or non-apoptotic cell death may help the development of novel therapeutic strategies against Bcr-Abl+ leukemias.


Sign in / Sign up

Export Citation Format

Share Document