scholarly journals Artificial Biomimetic Electrochemical Assemblies

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Tanja Zidarič ◽  
Matjaž Finšgar ◽  
Uroš Maver ◽  
Tina Maver

Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.

The Analyst ◽  
2021 ◽  
Author(s):  
Ghazaleh Jamalipour Soufi ◽  
Siavash Iravani ◽  
Rajender S Varma

Molecularly imprinted polymers (MIPs) have numerous applications in sensing field, the detection/recognition of virus, the structure determination of proteins, drug delivery, artificial/biomimetic antibodies, drug discovery, and cell culturing. There are...


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2757
Author(s):  
W. Rudolf Seitz ◽  
Casey J. Grenier ◽  
John R. Csoros ◽  
Rongfang Yang ◽  
Tianyu Ren

This perspective presents an overview of approaches to the preparation of molecular recognition agents for chemical sensing. These approaches include chemical synthesis, using catalysts from biological systems, partitioning, aptamers, antibodies and molecularly imprinted polymers. The latter three approaches are general in that they can be applied with a large number of analytes, both proteins and smaller molecules like drugs and hormones. Aptamers and antibodies bind analytes rapidly while molecularly imprinted polymers bind much more slowly. Most molecularly imprinted polymers, formed by polymerizing in the presence of a template, contain a high level of covalent crosslinker that causes the polymer to form a separate phase. This results in a material that is rigid with low affinity for analyte and slow binding kinetics. Our approach to templating is to use predominantly or exclusively noncovalent crosslinks. This results in soluble templated polymers that bind analyte rapidly with high affinity. The biggest challenge of this approach is that the chains are tangled when the templated polymer is dissolved in water, blocking access to binding sites.


Sign in / Sign up

Export Citation Format

Share Document