scholarly journals Intraoperative Computed Tomography-Based Navigation with Augmented Reality for Lateral Approaches to the Spine

2021 ◽  
Vol 11 (5) ◽  
pp. 646
Author(s):  
Mirza Pojskić ◽  
Miriam Bopp ◽  
Benjamin Saß ◽  
Andreas Kirschbaum ◽  
Christopher Nimsky ◽  
...  

Background. Lateral approaches to the spine have gained increased popularity due to enabling minimally invasive access to the spine, less blood loss, decreased operative time, and less postoperative pain. The objective of the study was to analyze the use of intraoperative computed tomography with navigation and the implementation of augmented reality in facilitating a lateral approach to the spine. Methods. We prospectively analyzed all patients who underwent surgery with a lateral approach to the spine from September 2016 to January 2021 using intraoperative CT applying a 32-slice movable CT scanner, which was used for automatic navigation registration. Sixteen patients, with a median age of 64.3 years, were operated on using a lateral approach to the thoracic and lumbar spine and using intraoperative CT with navigation. Indications included a herniated disc (six patients), tumors (seven), instability following the fracture of the thoracic or lumbar vertebra (two), and spondylodiscitis (one). Results. Automatic registration, applying intraoperative CT, resulted in high accuracy (target registration error: 0.84 ± 0.10 mm). The effective radiation dose of the registration CT scans was 6.16 ± 3.91 mSv. In seven patients, a control iCT scan was performed for resection and implant control, with an ED of 4.51 ± 2.48 mSv. Augmented reality (AR) was used to support surgery in 11 cases, by visualizing the tumor outline, pedicle screws, herniated discs, and surrounding structures. Of the 16 patients, corpectomy was performed in six patients with the implantation of an expandable cage, and one patient underwent discectomy using the XLIF technique. One patient experienced perioperative complications. One patient died in the early postoperative course due to severe cardiorespiratory failure. Ten patients had improved and five had unchanged neurological status at the 3-month follow up. Conclusions. Intraoperative computed tomography with navigation facilitates the application of lateral approaches to the spine for a variety of indications, including fusion procedures, tumor resection, and herniated disc surgery.

Author(s):  
Holger Keil ◽  
Sven Y. Vetter ◽  
Paul Alfred Grützner ◽  
Jochen Franke

Abstract Background When using mobile 3D C-arms, impairments in image quality occur due to artefacts caused by metal implants as well as to the limited field of view. To avoid these restrictions, special computed tomography devices were designed, in order to improve image quality and to meet requirements for intraoperative usage. Objectives To analyse practicability and benefits of a mobile intraoperative CT device (Airo, Brainlab, Munich, Germany) on the basis of several parameters that were obtained during a 40-month period. Materials and Methods All procedures that were performed with usage of intraoperative CT between January 2017 and April 2020 were analysed with respect to anatomical region, count of scans, duration of scans, consequences drawn from the scans and use of navigation. Results 354 CT-scans were performed in 171 patients (mean 2.07 [1 – 6] scans per procedure). 47.81% of the procedures were spinal, 52.19% affected the pelvis. 83% of the procedures were navigated. In 22% of patients, improvement in implant placement or reduction was achieved; in most patients (55%), a guidewire for pedicle screws was corrected. The mean scan duration was 10.33 s (3.54 – 21.72). Conclusions Use of intraoperative CT was reliable and helpful. Integration in OR standards requires more effort than mobile 3D C-arms. Image quality was outstanding for intraoperative conditions and allowed proper assessment of implant placement and reduction in all cases. Due to the high financial outlay of the system and the good image quality of 3D C-arms in the extremities, we assume that this procedure can be applied in intraoperative CT in traumatological cases in spinal and pelvic surgery in high-level trauma centres.


2021 ◽  
pp. 1-3
Author(s):  
Koichi Endo ◽  
Koichi Endo ◽  
Hideyuki Arima ◽  
Tomohiko Hasegawa ◽  
Yu Yamato ◽  
...  

This is the first report using intraoperative CT navigation for Tumor-induced Osteomalacia (TIO) lesions of the spine. TIO is a rare paraneoplastic disorder caused by tumors secret Fibroblast growth factor 23 secreted by tumor tissue. Surgical resection of the main tumor is the only definitive treatment. However, the tumor is usually small, and it hard to find it, and it tends to be seen when the recurrence is caused by the difficulty of whole tumor resection. A 57-year-old woman presented with a rare case of TIO located in T10 vertebra body. Using the intraoperative CT navigation, we resected the tumor in the T10 vertebral body very effective for accurate localization of the tumor and helpful for guidance of resection area and confirmation for excision of tumor. As a treatment for TIO, we report a tumor resection with intraoperative computed tomography navigation that made it possible to resect tumor in T10 vertebrae precisely and safely, which is small and difficult and dangerous access.


2014 ◽  
Vol 7 (6) ◽  
pp. 515-521 ◽  
Author(s):  
Andrew R. Hsu ◽  
Simon Lee

Stress fractures of the tarsal navicular are high-risk injuries that can result in displacement, avascular necrosis, malunion, and nonunion. Delayed diagnosis and improper treatment can lead to long-term functional impairments and poor clinical outcomes. Increased shear stress and decreased vascularity in the central third of the navicular can complicate bony healing with often unpredictable return times to activity using conservative management in a non-weight-bearing cast. There recently has been increasing debate regarding the effectiveness of treatment options with a trend toward surgical management to anatomically reduce and stabilize navicular stress fractures in athletes. However, anatomic reduction and fixation of the navicular can be difficult despite direct visualization and intraoperative fluoroscopy. We report a case of a chronic navicular stress fracture in a high-level teenage athlete treated with open reduction internal fixation (ORIF) and calcaneus autograft using intraoperative computed tomography (CT) (O-arm®, Medtronic, Minneapolis, MN) for real-time evaluation of fracture reduction and fixation. Intraoperative CT was fast, reliable, and allowed for confirmation of guide wire orientation, alignment, and length across the fracture site. Anatomic fixation of navicular stress fractures can be challenging, and it is important for surgeons to be aware of the potential advantages of using intraoperative CT when treating these injuries. Levels of Evidence: Therapeutic, Level IV: Case Report


2020 ◽  
Vol 32 (4) ◽  
pp. 542-547 ◽  
Author(s):  
Huan Liu ◽  
Junlong Wu ◽  
Yu Tang ◽  
Haiyin Li ◽  
Wenkai Wang ◽  
...  

OBJECTIVEThe authors aimed to assess, in a bone-agar experimental setting, the feasibility and accuracy of percutaneous lumbar pedicle screw placements using an intraoperative CT image–based augmented reality (AR)–guided method compared to placements using a radiograph-guided method. They also compared two AR hologram alignment methods.METHODSTwelve lumbar spine sawbones were completely embedded in hardened opaque agar, and a cubic marker was fixed on each phantom. After intraoperative CT, a 3D model of each phantom was generated, and a specialized application was deployed into an AR headset (Microsoft HoloLens). One hundred twenty pedicle screws, simulated by Kirschner wires (K-wires), were placed by two experienced surgeons, who each placed a total of 60 screws: 20 placed with a radiograph-guided technique, 20 with an AR technique in which the hologram was manually aligned, and 20 with an AR technique in which the hologram was automatically aligned. For each K-wire, the insertion path was expanded to a 6.5-mm diameter to simulate a lumbar pedicle screw. CT imaging of each phantom was performed after all K-wire placements, and the operative time required for each K-wire placement was recorded. An independent radiologist rated all images of K-wire placements. Outcomes were classified as grade I (no pedicle perforation), grade II (screw perforation of the cortex by up to 2 mm), or grade III (screw perforation of the cortex by > 2 mm). In a clinical situation, placements scored as grade I or II would be acceptable and safe for patients.RESULTSAmong all screw placements, 75 (94%) of 80 AR-guided placements and 40 (100%) of 40 radiograph-guided placements were acceptable (i.e., grade I or II; p = 0.106). Radiograph-guided placements had more grade I outcomes than the AR-guided method (p < 0.0001). The accuracy of the two AR alignment methods (p = 0.526) was not statistically significantly different, and neither was it different between the AR and radiograph groups (p < 0.0001). AR-guided placements required less time than the radiograph-guided placements (mean ± standard deviation, 131.76 ± 24.57 vs 181.43 ± 15.82 seconds, p < 0.0001). Placements performed using the automatic-alignment method required less time than those using the manual-alignment method (124.20 ± 23.80 vs 139.33 ± 23.21 seconds, p = 0.0081).CONCLUSIONSIn bone-agar experimental settings, AR-guided percutaneous lumbar pedicle screw placements were acceptable and more efficient than radiograph-guided placements. In a comparison of the two AR-guided placements, the automatic-alignment method was as accurate as the manual method but more efficient. Because of some limitations, the AR-guided system cannot be recommended in a clinical setting until there is significant improvement of this technology.


Neurosurgery ◽  
2011 ◽  
Vol 69 (4) ◽  
pp. 782-795 ◽  
Author(s):  
Kai-Michael Scheufler ◽  
Joerg Franke ◽  
Anke Eckardt ◽  
Hildegard Dohmen

Abstract BACKGROUND: Image-guided spinal instrumentation reduces the incidence of implant misplacement. OBJECTIVE: To assess the accuracy of intraoperative computed tomography (iCT)-based neuronavigation (iCT-N). METHODS: In 35 patients (age range, 18-87 years), a total of 248 pedicle screws were placed in the cervical (C1-C7) and upper and midthoracic (T1-T8) spine. An automated iCT registration sequence was used for multisegmental instrumentation, with the reference frame fixed to either a Mayfield head clamp and/or the most distal spinous process within the instrumentation. Pediculation was performed with navigated drill guides or Jamshidi cannulas. The angular deviation between navigated tool trajectory and final implant positions (evaluated on postinstrumentation iCT or postoperative CT scans) was calculated to assess the accuracy of iCT-N. Final screw positions were also graded according to established classification systems. Mean follow-up was 16.7 months. RESULTS: Clinically significant screw misplacement or iCT-N failure mandating conversion to conventional technique did not occur. A total of 71.4% of patients self-rated their outcome as excellent or good at 12 months; 99.3% of cervical screws were compliant with Neo classification grades 0 and 1 (grade 2, 0.7%), and neurovascular injury did not occur. In addition, 97.8% of thoracic pedicle screws were assigned grades I to III of the Heary classification, with 2.2% grade IV placement. Accuracy of iCT-N progressively deteriorated with increasing distance from the spinal reference clamp but allowed safe instrumentation of up to 10 segments. CONCLUSION: Image-guided spinal instrumentation using iCT-N with automated referencing allows safe, highly accurate multilevel instrumentation of the cervical and upper and midthoracic spine. In addition, iCT-N significantly reduces the need for reregistration in multilevel surgery.


2013 ◽  
Vol 3 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Jason C. Eck ◽  
Jeffrey Lange ◽  
John Street ◽  
Anthony Lapinsky ◽  
Christian P. DiPaola

2008 ◽  
Vol 22 (6) ◽  
pp. 635-641 ◽  
Author(s):  
Sarah K. Wise ◽  
Richard J. Harvey ◽  
John C. Goddard ◽  
Patrick O. Sheahan ◽  
Rodney J. Schlosser

Background The utility of image guidance (image-guided surgery [IGS]) and intraoperative computed tomography (CT) scanning as a tool for less experienced endoscopic surgeons to aid in localization of paranasal sinus and skull base anatomic structures was evaluated. Methods Partial endoscopic dissection was performed on cadaver specimens by three fellowship trained rhinologists. Anatomic sites within and around the sinuses were tagged with radio-opaque markers. Otolaryngology residents identified tagged anatomic sites using four successive levels of technology: endoscopy alone (simulating outpatient clinic), endoscopy plus preoperative CT (simulating endoscopic sinus surgery [ESS] without IGS), endoscopy plus IGS registered to preoperative CT (simulating current ESS with IGS), and endoscopy plus IGS registered to real-time intraoperative CT. Responses were graded as follows: consensus rhinologist answer (4 points), close answer without clinically significant difference (3 points), within anatomic region but definite clinical difference (2 points), outside of anatomic region (1 point), no answer (0 points). Results Eleven residents participated. Of 20 specific anatomic sites, IGS-intraoperative CT provided the most accurate anatomic identification at 16 sites. For 8 sites, IGS-intraoperative CT had a significantly higher score than endoscopy alone (p < 0.05; eta2 = 0.29-0.67). For 6 sites, IGS-preoperative CT scan had a significantly higher score than endoscopy alone (p < 0.05; eta2 = 0.30-0.67). All participants found that IGS-intraoperative CT scan made them most comfortable in identifying anatomy. Conclusion Combined IGS and intraoperative CT scan technology may be an instructional adjunct for less experienced paranasal sinus surgeons for dissection and evaluation of unfamiliar or distorted anatomy.


2021 ◽  
Author(s):  
Chao Tang ◽  
Ye Hui Liao ◽  
Qiang Tang ◽  
Fei Ma ◽  
Qing Wang ◽  
...  

Abstract Purpose The purpose of this study was to investigate and determine whether there are differences in L5 pedicles morphology between isthmic and degenerative L5-S1 spondylolisthesis. Methods One hundred and nineteen patients with isthmic spondylolisthesis and 45 patients with degenerative spondylolisthesis at L5-S1 were enrolled in the IS group and DS group, respectively, and 164 lumbar disc herniation patients without spondylolysis or spondylolisthesis were classified into the normal (NL) group. A series of pedicle parameters of the fifth lumbar vertebra, including pedicle length (PL), pedicle width (PW), pedicle screw trajectory length (PSTL), pedicle height (PH), and the pedicle camber angle (PCA) were measured using multi-slice spiral computed tomography (MSCT). The slip distance of the L5 vertebra was measured on radiography, and the percentage of slip was also recorded. Results The pedicles of the fifth lumbar vertebra were shorter and wider, and the PCA was larger in the IS group compared to the DS group and NL group. On the contrary, the pedicles in the DS group were elongated and thinner, and the PCA was smaller. The pedicle parameters of PL were significantly positively correlated with the percentage of slip in the DS group, but PW and PCA were negatively correlated with the percentage of slip. There was no correlation between the percentage of slip and L5 pedicle parameters in the IS group. Conclusions The L5 pedicles morphology in L5-S1 isthmic spondylolisthesis shows abduction, shortness, and width, while that in the degenerative spondylolisthesis shows adduction, lengthening, and thinning compared with the normal populations. The morphology changes may be the result of pedicle stress remodeling in the development of spondylolisthesis, which should be taken into consideration when placing at the insertion of pedicle screws.


2021 ◽  
Author(s):  
GENTARO KUMAGAI ◽  
Kanichiro Wada ◽  
Sunao Tanaka ◽  
Toru Asari ◽  
Yohshiro Nitobe ◽  
...  

Abstract Purpose: Although the use of intraoperative computed tomography (CT)-based navigation systems is unlikely to cause intraoperative contamination more than the use of intraoperative fluoroscopy, the association between intraoperative CT/navigation and surgical site infections (SSIs) remains unclear. We investigated the incidence of SSIs and the association between intraoperative CT/navigation and SSIs for spinal surgeries.Methods: Of the 512 patients who underwent spinal surgery between April 2016 and December 2020, 304 underwent C-arm intraoperative fluoroscopy and/or Medtronic O-arm intraoperative CT/navigation system. We investigated the incidence of SSIs in patients with four techniques; no intraoperative imaging C-arm only, O-arm only, and both O- and C-arm used. Multivariate logistic analyses were conducted using the prevalence of SSIs as the dependent variable. The independent variables were age, sex, and potential confounders including preoperative Japanese Orthopaedic Association (JOA) score, use of instrumentation, C-arm and/or O-arm. Results: The incidence of the SSIs in patients with no imaging, C-arm only, O-arm only, and both modalities used was 1.9%, 7.3%, 4.7%, and 8.3%, respectively. There was no significant difference in the incidence of SSIs between the four techniques. Multivariate logistic analyses showed a significant correlation between the prevalence of SSI and JOA scores (odds ratio, 0.878; 95%CI, 0.759-0.990) and use of instrumentation (odds ratio, 6.241; 95%CI, 1.113-34.985), but not use of O-arm.Conclusions: The incidence of the SSIs in patients with only O-arm used was 4.7%. Preoperative clinical status and use of instrumentation, but not use of the O-arm, was associated with SSIs after spinal surgeries.


Sign in / Sign up

Export Citation Format

Share Document