scholarly journals Silica Precursor Effect on the Physical and Chemical Properties of Cobalt Incorportated MCM-41 Catalysts and Their Performance towards Single Wall Carbon Nanotubes

2018 ◽  
Vol 4 (1) ◽  
pp. 16 ◽  
Author(s):  
Frank Ramírez Rodríguez ◽  
Luis Giraldo ◽  
Betty Lopez
2013 ◽  
Vol 2 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Susanna Bosi ◽  
Alessandra Fabbro ◽  
Laura Ballerini ◽  
Maurizio Prato

AbstractOwing to their peculiar physical and chemical properties, carbon nanotubes are intensively studied for many different applications, including those in the biomedical field. Carbon nanotubes are electrically conductive, elastic but mechanically resistant and these features, among others, have made them an ideal material for therapeutic applications at the neural tissue interface. The major recent advances in the study of carbon nanotube-based materials aimed at nerve tissue regeneration and functional recovery are reviewed here.


Author(s):  
Jiabei Guo ◽  
Hui Jiang ◽  
Yan Teng ◽  
Yue Xiong ◽  
Zhuhui Chen ◽  
...  

Magnetic carbon nanotubes (MCNTs), consisting of carbon nanotubes (CNTs) and magnetic nanoparticles (MNPs), have enormous exploration and application potentials due to their superior physical and chemical properties, such as unique...


MRS Advances ◽  
2017 ◽  
Vol 3 (1-2) ◽  
pp. 1-11
Author(s):  
Chengzhi Luo ◽  
Chunxu Pan

ABSTRACTCarbon nanotubes (CNTs) possess superior mechanical, physical and chemical properties that make them ideal candidates for making sensors. However, challenges restricting their widespread applications in sensors still exist. To make the CNTs-based sensors own higher performance, nature has offered us with scientific and technological clues from the formation of biological composites using common organic components via naturally mild approaches. This paper reviews the recent progress on the bio-inspired synthesis of the CNTs-based sensors and their unique structures and novel properties.


2013 ◽  
Vol 634-638 ◽  
pp. 192-197
Author(s):  
Jiang Yan Li ◽  
Ying Xiang Jiang

The unique morphology and structure of carbon nanotubes (CNTs) keep attracting a great number of researchers to explore the novel properties of these materials. The special structure of CNTs determines its physical and chemical properties, mainly reflected in its novel electrical, mechanical properties and excellent adsorption performance. This review summarizes the adsorption properties of CNTs and their properties related to the adsorption of various heavy metal ions, organic and inorganic pollutants from large volumes of aqueous solutions. CNTs is a kind of potential environmental material. This article also put forward future opportunities for CNTs application in environmental systems.


2007 ◽  
Vol 06 (06) ◽  
pp. 431-442 ◽  
Author(s):  
W. L. WANG ◽  
X. D. BAI ◽  
E. G. WANG

Soon after the discovery of carbon nanotubes (CNTs) in the early 1990's, the B - and/or N -doped CNTs began to attract increasing interest owing to their modified structural, physical and chemical properties. In comparison with the multi-walled nanotubes and nanofibers, substitutional doping of the single-walled nanotubes (SWNTs) has proved to be much more difficult, and it is only in very recent years that some experimental studies concerning the B - and/or N -doped SWNTs are emerging. This paper intends to provide an up-to-date overview of current research on the doped SWNTs, with scopes covering both the binary system of CB x- and CN x-SWNTs and the ternary B x C y N z-SWNTs. A survey of the latest achievements in the syntheses of doped SWNTs through either the direct syntheses methods or the post-synthetic substitution reaction route is first presented; then the aspects concerning their structural features, elemental compositions, dopants bonding configuration and atomic distributions, as well as their physical and chemical properties are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaqi Tang ◽  
Xiang Wang ◽  
Jiaxu Zhang ◽  
Jing Wang ◽  
Wanjian Yin ◽  
...  

AbstractThe interesting physical and chemical properties of carbon nanotubes (CNTs) have prompted the search for diverse inorganic nanotubes with different compositions to expand the number of available nanotechnology applications. Among these materials, crystalline inorganic nanotubes with well-defined structures and uniform sizes are suitable for understanding structure–activity relationships. However, their preparation comes with large synthetic challenges owing to their inherent complexity. Herein, we report the example of a crystalline nanotube array based on a supertetrahedral chalcogenide cluster, K3[K(Cu2Ge3Se9)(H2O)] (1). To the best of our knowledge, this nanotube array possesses the largest diameter of crystalline inorganic nanotubes reported to date and exhibits an excellent structure-dependent electric conductivity and an oriented photoconductive behavior. This work represents a significant breakthrough both in terms of the structure of cluster-based metal chalcogenides and in the conductivity of crystalline nanotube arrays (i.e., an enhancement of ~4 orders of magnitude).


2021 ◽  
Author(s):  
Thianne Silva Batista Barbosa ◽  
Thiago Rodrigo Barbosa Barros ◽  
Tellys Lins Almeida Barbosa ◽  
Meiry Gláucia Freire Rodrigues

Abstract The synthesis of mesoporous materials such as MCM-41 and SBA-15 requires large amounts of water to neutralize the resulting products. The filtrate (mother liquor) therefore contains unreacted components that can be recycled and reused. The addition of the mother liquor in consecutive syntheses was carried out in order to evaluate the different effects on the physical and chemical properties of the mesoporous materials. For this purpose, the mother liquor from the initial synthesis (1st Generation) was saved and used for the second synthesis (2nd Generation) and successively for the third synthesis (3rd Generation). The three generations of each material were then characterized using different techniques such as X-ray diffraction, X-ray dispersive energy fluorescence, electron microscopy, infrared spectroscopy, Thermal behavior by thermogravimetric analysis and N2 adsorption. The materials obtained showed similar diffractograms for the three generations and also showed similar percentages of silica through XRF. The SEM and IR results for molecular sieves showed the effectiveness of the processes of MCM-41 and SBA-15 synthesis using mother liquor. The results made it possible to observe that the structures of the materials had no significant differences in their physical and chemical properties, favoring the use of mother liquor for up to three generations.


Sign in / Sign up

Export Citation Format

Share Document