scholarly journals The miR-26b-5p/KPNA2 Axis Is an Important Regulator of Burkitt Lymphoma Cell Growth

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1464
Author(s):  
Fubiao Niu ◽  
Marta Kazimierska ◽  
Ilja M. Nolte ◽  
Miente Martijn Terpstra ◽  
Debora de Jong ◽  
...  

The expression of several microRNAs (miRNAs) is known to be changed in Burkitt lymphoma (BL), compared to its normal counterparts. Although for some miRNAs, a role in BL was demonstrated, for most of them, their function is unclear. In this study, we aimed to identify miRNAs that control BL cell growth. Two BL cell lines were infected with lentiviral pools containing either 58 miRNA inhibitors or 44 miRNA overexpression constructs. Eighteen constructs showed significant changes in abundance over time, indicating that they affected BL growth. The screening results were validated by individual green fluorescent protein (GFP) growth competition assays for fifteen of the eighteen constructs. For functional follow-up studies, we focused on miR-26b-5p, whose overexpression inhibited BL cell growth. Argonaute 2 RNA immunoprecipitation (Ago2-IP) in two BL cell lines revealed 47 potential target genes of miR-26b-5p. Overlapping the list of putative targets with genes showing a growth repression phenotype in a genome-wide CRISPR/Cas9 knockout screen, revealed eight genes. The top-5 candidates included EZH2, COPS2, KPNA2, MRPL15, and NOL12. EZH2 is a known target of miR-26b-5p, with oncogenic properties in BL. The relevance of the latter four targets was confirmed using sgRNAs targeting these genes in individual GFP growth competition assays. Luciferase reporter assay confirmed binding of miR-26b-5p to the predicted target site for KPNA2, but not to the other genes. In summary, we identified 18 miRNAs that affected BL cell growth in a loss- or gain-of-function screening. A tumor suppressor role was confirmed for miR-26b-5p, and this effect could at least in part be attributed to KPNA2, a known regulator of OCT4, c-jun, and MYC.

Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1301-1307 ◽  
Author(s):  
Giulia De Falco ◽  
Eleonora Leucci ◽  
Dido Lenze ◽  
Pier Paolo Piccaluga ◽  
Pier Paolo Claudio ◽  
...  

Abstract Burkitt lymphoma (BL) is a B-cell tumor whose characteristic gene aberration is the translocation t(8;14), which determines c-myc overexpression. Several genetic and epigenetic alterations other than c-myc overexpression have also been described in BL. It has been demonstrated that the RBL2/p130 gene, a member of the retinoblastoma family (pRbs), is mutated in BL cell lines and primary tumors. The aim of this study was to investigate the biologic effect of RBL2/p130 in BL cells and its possible role in lymphomagenesis. Therefore, we reintroduced a functional RBL2/p130 in BL cell lines where this gene was mutated. Our results demonstrated that RBL2/p130-transfected cells regain growth control. This suggests that RBL2/p130 may control the expression of several genes, which may be important for cell growth and viability. Gene-expression analysis revealed a modulation of several genes, including CGRRF1, RGS1, BTG1, TIA1, and PCDHA2, upon RBL2/p130 reintroduction. We then monitored their expression in primary tumors of endemic BL as well, demonstrating that their expression resembled those of the BL cell lines. In conclusion, these data suggest that, as RBL2/p130 modulates the expression of target genes, which are important for cell growth and viability, its inactivation may be relevant for the occurrence of BL.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3546
Author(s):  
Fubiao Niu ◽  
Agnieszka Dzikiewicz-Krawczyk ◽  
Jasper Koerts ◽  
Debora de Jong ◽  
Laura Wijenberg ◽  
...  

MicroRNAs (miRNAs) are small RNA molecules with important gene regulatory roles in normal and pathophysiological cellular processes. Burkitt lymphoma (BL) is an MYC-driven lymphoma of germinal center B (GC-B) cell origin. To gain further knowledge on the role of miRNAs in the pathogenesis of BL, we performed small RNA sequencing in BL cell lines and normal GC-B cells. This revealed 26 miRNAs with significantly different expression levels. For five miRNAs, the differential expression pattern was confirmed in primary BL tissues compared to GC-B cells. MiR-378a-3p was upregulated in BL, and its inhibition reduced the growth of multiple BL cell lines. RNA immunoprecipitation of Argonaute 2 followed by microarray analysis (Ago2-RIP-Chip) upon inhibition and ectopic overexpression of miR-378a-3p revealed 63 and 20 putative miR-378a-3p targets, respectively. Effective targeting by miR-378a-3p was confirmed by luciferase reporter assays for MAX Network Transcriptional Repressor (MNT), Forkhead Box P1 (FOXP1), Interleukin 1 Receptor Associated Kinase 4 (IRAK4), and lncRNA Just Proximal To XIST (JPX), and by Western blot for IRAK4 and MNT. Overexpression of IRAK4 and MNT phenocopied the effect of miR-378a-3p inhibition. In summary, we identified miR-378a-3p as a miRNA with an oncogenic role in BL and identified IRAK4 and MNT as miR-378a-3p target genes that are involved in its growth regulatory role.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


1998 ◽  
Vol 111 (13) ◽  
pp. 1767-1778 ◽  
Author(s):  
C.L. Ho ◽  
J.L. Martys ◽  
A. Mikhailov ◽  
G.G. Gundersen ◽  
R.K. Liem

In order to study the dynamic behavior of intermediate filament networks in living cells, we have prepared constructs fusing green fluorescent protein to intermediate filament proteins. Vimentin fused to green fluorescent protein labeled the endogenous intermediate filament network. We generated stable SW13 and NIH3T3 cell lines that express an enhanced green fluorescent protein fused to the N-terminus of full-length vimentin. We were able to observe the dynamic behavior of the intermediate filament network in these cells for periods as long as 4 hours (images acquired every 2 minutes). In both cell lines, the vimentin network constantly moves in a wavy manner. In the NIH3T3 cells, we observed extension of individual vimentin filaments at the edge of the cell. This movement is dependent on microtubules, since the addition of nocodazole stopped the extension of the intermediate filaments. Injection of anti-IFA causes the redistribution or ‘collapse’ of intermediate filaments. We injected anti-IFA antibodies into NIH3T3 cells stably expressing green fluorescent protein fused to vimentin and found that individual intermediate filaments move slowly towards the perinuclear area without obvious disassembly. These results demonstrate that individual intermediate filaments are translocated during the collapse, rather than undergoing disassembly-induced redistribution. Injections of tubulin antibodies disrupt the interactions between intermediate filaments and stable microtubules and cause the collapse of the vimentin network showing that these interactions play an important role in keeping the intermediate filament network extended. The nocodazole inhibition of intermediate filament extension and the anti-IFA microinjection experiments are consistent with a model in which intermediate filaments exhibit an extended distribution when tethered to microtubules, but are translocated to the perinuclear area when these connections are severed.


Author(s):  
Dandan Li ◽  
Changjun He ◽  
Junfeng Wang ◽  
Yanbo Wang ◽  
Jianlong Bu ◽  
...  

Many studies have shown that downregulation of miR-138 occurs in a variety of cancers including non-small cell lung cancer (NSCLC). However, the precise mechanisms of miR-138 in NSCLC have not been well clarified. In this study, we investigated the biological functions and molecular mechanisms of miR-138 in NSCLC cell lines, discussing whether it could turn out to be a therapeutic biomarker of NSCLC in the future. In our study, we found that miR-138 is downregulated in NSCLC tissues and cell lines. Moreover, the low level of miR-138 was associated with increased expression of SOX4 in NSCLC tissues and cell lines. Upregulation of miR-138 significantly inhibited proliferation of NSCLC cells. In addition, invasion and EMT of NSCLC cells were suppressed by overexpression of miR-138. However, downregulation of miR-138 promoted cell growth and metastasis of NSCLC cells. Bioinformatics analysis predicted that SOX4 was a potential target gene of miR-138. Next, luciferase reporter assay confirmed that miR-138 could directly target SOX4. Consistent with the effect of miR-138, downregulation of SOX4 by siRNA inhibited proliferation, invasion, and EMT of NSCLC cells. Overexpression of SOX4 in NSCLC cells partially reversed the effect of miR-138 mimic. In addition, decreased SOX4 expression could increase the level of miR-138 via upregulation of p53. Introduction of miR-138 dramatically inhibited growth, invasion, and EMT of NSCLC cells through a SOX4/p53 feedback loop.


2000 ◽  
Vol 278 (3) ◽  
pp. F361-F368 ◽  
Author(s):  
N. Hernando ◽  
S. Sheikh ◽  
Z. Karim-Jimenez ◽  
H. Galliker ◽  
J. Forgo ◽  
...  

Targeting of newly synthesized transporters to either the apical or basolateral domains of polarized cells is crucial for the function of epithelia, such as in the renal proximal tubule or in the small intestine. Recently, different sodium-phosphate cotransporters have been identified. Type II cotransporters can be subdivided into two groups: type IIa and type IIb. Type IIa is predominantly expressed in renal proximal tubules, whereas type IIb is located on the intestinal and lung epithelia. To gain some insights into the polarized targeting of the type II cotransporters, we have transiently expressed type IIa and type IIb cotransporters in several epithelial cell lines: two lines derived from renal proximal cells (opossum kidney and LLC-PK1), one from renal distal cells (Madin-Darby canine kidney), and one from colonic epithelium (CaCo-2). We studied the expression of the transporters fused to the enhanced green fluorescent protein. Our data indicate that the polarized targeting is dependent on molecular determinants most probably located at the COOH terminus of the cotransporters as well as on the cellular context.


2000 ◽  
Vol 113 (15) ◽  
pp. 2679-2683 ◽  
Author(s):  
K. Sugaya ◽  
M. Vigneron ◽  
P.R. Cook

RNA polymerase II is a multi-subunit enzyme responsible for transcription of most eukaryotic genes. It associates with other complexes to form enormous multifunctional ‘holoenzymes’ involved in splicing and polyadenylation. We wished to study these different complexes in living cells, so we generated cell lines expressing the largest, catalytic, subunit of the polymerase tagged with the green fluorescent protein. The tagged enzyme complements a deficiency in tsTM4 cells that have a temperature-sensitive mutation in the largest subunit. Some of the tagged subunit is incorporated into engaged transcription complexes like the wild-type protein; it both resists extraction with sarkosyl and is hyperphosphorylated at its C terminus. Remarkably, subunits bearing such a tag can be incorporated into the active enzyme, despite the size and complexity of the polymerizing complex. Therefore, these cells should prove useful in the analysis of the dynamics of transcription in living cells.


2018 ◽  
Vol 49 (1) ◽  
pp. 144-159 ◽  
Author(s):  
Ye Yuan ◽  
Fubiao Niu ◽  
Ilja M. Nolte ◽  
Jasper Koerts ◽  
Debora de Jong ◽  
...  

Background/Aims: Classical Hodgkin lymphoma (cHL) is among the most frequent lymphoma subtypes. The tumor cells originate from crippled germinal center (GC)-B cells that escaped from apoptosis. MicroRNAs (miRNAs) play important roles in B-cell maturation and aberrant expression of miRNAs contributes to the pathogenesis of cHL. Our aim was to identify oncogenic miRNAs relevant for growth of cHL using a high-throughput screening approach. Methods: A lentiviral pool of 63 miRNA inhibition constructs was used to identify miRNAs essential to cell growth in three cHL cell lines in duplicate. As a negative control we also infected cHL cell lines with a lentiviral barcoded empty vector pool consisting of 222 constructs. The abundance of individual constructs was followed over time by a next generation sequencing approach. The effect on growth was confirmed using individual GFP competition assays and on apoptosis using Annexin-V staining. Our previously published Argonaute 2 (Ago2) immunoprecipitation (IP) data were used to identify target genes relevant for cell growth / apoptosis. Luciferase assays and western blotting were performed to confirm targeting by miRNAs. Results: Four miRNA inhibition constructs, i.e. miR-449a-5p, miR-625-5p, let-7f-2-3p and miR-21-5p, showed a significant decrease in abundance in at least 4 of 6 infections. In contrast, none of the empty vector constructs showed a significant decrease in abundance in 3 or more of the 6 infections. The most abundantly expressed miRNA, i.e. miR-21-5p, showed significantly higher expression levels in cHL compared to GC-B cells. GFP competition assays confirmed the negative effect of miR-21-5p inhibition on HL cell growth. Annexin-V staining of cells infected with miR-21-5p inhibitor indicated a significant increase in apoptosis at day 7 and 9 after viral infection, consistent with the decrease in growth. Four miR-21-5p cell growth- and apoptosis-associated targets were AGO2-IP enriched in cHL cell lines and showed a significant decrease in expression in cHL cell lines in comparison to normal GC-B cells. For the two most abundantly expressed, i.e. BTG2 and PELI1, we confirmed targeting by miR-21-5p using luciferase assays and for PELI1 we also confirmed this at the protein level by western blotting. Conclusion: Using a miRNA loss-of-function high-throughput screen we identified four miRNAs with oncogenic effects in cHL and validated the results for the in cHL abundantly expressed miR-21-5p. MiR-21-5p is upregulated in cHL compared to GC-B cells and protects cHL cells from apoptosis possibly via targeting BTG2 and PELI1.


2019 ◽  
Vol 97 (6) ◽  
pp. 722-730 ◽  
Author(s):  
Jianrong Wu ◽  
Juan Miao ◽  
Ye Ding ◽  
Yayun Zhang ◽  
Xiaohao Huang ◽  
...  

Numerous studies have reported that CPSF4 is over-expressed in a large percentage of human lung cancers, and CPSF4 has been identified as a potential oncogene of human lung tumor. Downregulation of CPSF4 inhibits the proliferation and promotes the apoptosis of lung adenocarcinoma cells. A previous study by our group also found overexpression of CPSF4 in breast cancer (BC), and was closely associated with a poor prognosis for the patient. This study investigates microRNAs (miRNAs) that target CPSF4 to modulate BC cell proliferation. We found that miR-4458 was noticeably reduced in BC tissues and cells. Using a miR-4458 mimic, we found that cell proliferation, migration, and invasiveness were suppressed by miR-4458 overexpression, and were enhanced by reducing the expression of miR-4458. Moreover, the results from bioinformatics analyses suggest a putative target site in the CPSF4 3′-UTR. Furthermore, using luciferase reporter assays and Western blotting, we verified that miR-4458 directly targets the 3′-UTR of CPSF4 and downregulates COX-2 and h-TERT, which are downstream target genes of CPSF4. Additionally, PI3K/AKT and ERK were shown to be inhibited by miR-4458 overexpression in BC cells. Moreover, miR-4458 suppresses BC cell growth in vivo. Consequently, these results suggest that the miR-4458–CPSF4–COX-2–hTERT axis might serve as a potential target for the treatment of BC patients.


Sign in / Sign up

Export Citation Format

Share Document